Math 535 - General Topology Additional notes

Martin Frankland

November 28, 2012

1 Evaluation map

Proposition 1.1. Let X be a locally compact Hausdorff space and Y an arbitrary topological space. Then the evaluation map

$$e\colon X \times C(X,Y) \to Y$$

given by e(x, f) = f(x) is continuous.

Remark 1.2. The evaluation map is not always continuous.

Exercise 1.3 (Munkres 46.8). Let \mathcal{T} be a topology on the set C(X, Y) making the evaluation map $e: X \times C(X, Y) \to Y$ continuous. Then \mathcal{T} contains the compact-open topology.

Now let X, Y, and T be topological spaces, and let F(X, Y) denote the set of all functions from X to Y. There is a natural bijection of sets:

$$\varphi \colon F(X \times T, Y) \xrightarrow{\cong} F(T, F(X, Y)) \tag{1}$$

sending a function $H: X \times T \to Y$ to the function $\varphi(H): T \to F(X, Y)$ defined by $\varphi(H)(t) = H(-, t) =: h_t$.

Proposition 1.4. (a) If a function $H: X \times T \to Y$ is continuous, then the following two conditions hold:

- 1. $h_t: X \to Y$ is continuous for all $t \in T$;
- 2. The corresponding function $\varphi(H): T \to C(X,Y)$ is continuous.

(b) Assuming X is locally compact Hausdorff, the converse holds as well. In other words, if conditions 1. and 2. hold, then the corresponding function $H: X \times T \to Y$ is continuous.

Proof. (a) Homework 13 Problem 2.

(b) Rewriting H(x,t) as

$$H(x,t) = H(-,t)(x)$$
$$= (\varphi(H)(t))(x)$$
$$= e(x,\varphi(H)(t))$$

we see that the function $H: X \times T \to Y$ corresponding to $\varphi(H): T \to C(X, Y)$ is the composite

The map $\varphi(H): T \to C(X, Y)$ is continuous by assumption, and so is $\operatorname{id}_X \times \varphi(H)$. Since X is locally compact Hausdorff, the evaluation map e is continuous (by 1.1), and so is the composite $H = e \circ (\operatorname{id}_X \times \varphi(H))$.

Interpretation. For any spaces X, Y, T, part (a) ensures that the bijection φ from (1) restricts to a map

$$\varphi \colon C(X \times T, Y) \to C\left(T, C(X, Y)\right) \tag{2}$$

sometimes called the **adjunction map**. This latter φ is always injective, since the original φ was injective.

However, the latter φ is not always surjective. In other words, a family $\{h_t \colon X \to Y\}_{t \in T}$ of continuous maps that vary continuously in the parameter $t \in T$ do not always yield a map $H \colon X \times T \to Y$ which is jointly continuous in both arguments.

Part (b) says that if X is nice enough (e.g. locally compact Hausdorff), then φ is indeed surjective.

Remark 1.5. Proposition 1.4 is useful when trying to show that a map $T \to C(X, Y)$ into a mapping space is continuous. By part (a), it suffices that the corresponding map $X \times T \to Y$ be continuous.