Math 535 - General Topology Additional notes

Martin Frankland

November 12, 2012

1 Partitions of unity

Definition 1.1. Let X be a topological space and $f: X \to \mathbb{R}$ a continuous function. The **support** of f is the closed subset

$$\operatorname{supp} f := \overline{\{x \in X \mid f(x) \neq 0\}} \subseteq X.$$

Definition 1.2. A cover $\{U_{\alpha}\}_{\alpha \in A}$ of a space X is **locally finite** if for all $x \in X$, there is a neighborhood N_x of x that intersects only finitely many of the U_{α} , i.e.

$$N_x \cap U_\alpha \neq \emptyset$$

for finitely many $\alpha \in A$.

Note that the definition applies to any kind of cover, not just open covers.

Definition 1.3. A partition of unity on a space X is a family of continuous functions $\{\rho_{\beta} \colon X \to [0,1]\}_{\beta \in B}$ satisfying the following two properties.

- 1. The family $\{\operatorname{supp} \rho_{\beta}\}_{\beta \in B}$ is locally finite.
- 2. $\sum_{\beta \in B} \rho_{\beta}(x) = 1$ for all $x \in X$.

In particular, the supports $\{\operatorname{supp} \rho_{\beta}\}_{\beta \in B}$ form a cover of X, and for all $x \in X$, $\rho_{\beta}(x) = 0$ for all except finitely many indices $\beta \in B$.

The partition of unity is **subordinate** to a cover $\{U_{\alpha}\}_{\alpha \in A}$ of X if for all $\beta \in B$, there is an index $\alpha = \alpha(\beta) \in A$ satisfying

$$\operatorname{supp} \rho_{\beta} \subseteq U_{\alpha(\beta)}.$$

Remark 1.4. One could assume WLOG that the indexing set B is A. Indeed, one could add together the functions ρ_{β} supported on the same U_{α} , and consider the constant zero function for each index α that does not appear as $\alpha(\beta)$.

It is useful to have partitions of unity subordinate to any open cover. We will find conditions on a space that make this always possible.

2 Paracompactness

Definition 2.1. Let \mathcal{U} be a cover of X. A **refinement** of \mathcal{U} is a cover \mathcal{V} of X such that every member $V \in \mathcal{V}$ is a subset of some $U \in \mathcal{U}$.

In other words, a cover $\{V_{\beta}\}_{\beta \in B}$ is a refinement of the cover $\{U_{\alpha}\}_{\alpha \in A}$ if for all $\beta \in B$, there is an index $\alpha(\beta) \in A$ satisfying

$$V_{\beta} \subseteq U_{\alpha(\beta)}.$$

Example 2.2. $\{(n, n+2)\}_{n\in\mathbb{Z}}$ is a refinement of the cover $\{\mathbb{R}\}$ of \mathbb{R} .

Example 2.3. $\{(0,\infty)\}$ is a refinement of the cover $\{(n,\infty)\}_{n=0}^{\infty}$ of $(0,\infty)$.

Definition 2.4. A topological space X is **paracompact** if every open cover of X admits a locally finite open refinement.

Remark 2.5. Some authors (e.g. Bredon, Willard) include the Hausdorff condition in the definition of paracompact. Other authors (e.g. Munkres, Wikipedia) do not assume that the space is Hausdorff. We will *not* assume that the definition of paracompact includes Hausdorff.

Example 2.6. Every compact space is paracompact.

Example 2.7. \mathbb{R}^n is paracompact. This will follow from 2.13.

Definition 2.8. A space is σ -compact if it is a countable union of compact subspaces.

Example 2.9. \mathbb{R}^n is σ -compact, as it is the union of closed balls $\mathbb{R}^n = \bigcup_{k \in \mathbb{N}} \overline{B_k(0)}$.

Example 2.10. Any closed subset of \mathbb{R}^n is σ -compact.

Example 2.11. More generally, any closed subset $C \subseteq X$ of a σ -compact Hausdorff space X is σ -compact.

Example 2.12. Any second-countable manifold is σ -compact. More generally, any second-countable locally compact space is σ -compact (c.f. Homework 12 #2).

Proposition 2.13. Every locally compact, σ -compact, Hausdorff space is paracompact.

Proposition 2.14. A closed subspace of a paracompact space is paracompact.

Proof. Homework 12 #3.

Lemma 2.15. If $\{A_i\}_{i \in I}$ is a locally finite collection of subsets $A_i \subseteq X$, then we have

$$\overline{\bigcup_{i\in I}A_i} = \bigcup_{i\in I}\overline{A_i}.$$

Proposition 2.16. Every paracompact Hausdorff space is normal.

Proposition 2.17 (Shrinking lemma). Let X be a paracompact Hausdorff space and $\{U_{\alpha}\}_{\alpha \in A}$ an open cover. Then there is a locally finite open cover $\{V_{\alpha}\}_{\alpha \in A}$ satisfying $\overline{V_{\alpha}} \subseteq U_{\alpha}$ for all $\alpha \in A$.

Note that the indexing set A is the same for both open covers. Note also that V_{α} is allowed to be empty.

Theorem 2.18 (Existence of partitions of unity). Let X be a paracompact Hausdorff space and $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in A}$ an open cover. Then there is a partition of unity on X subordinate to \mathcal{U} .

3 Applications to manifolds

Theorem 3.1. Any compact Hausdorff manifold can be embedded in \mathbb{R}^N for some N.

Proof. Let M be an m-dimensional compact Hausdorff manifold. For each $x \in M$, a coordinate chart about x consists of a homeomorphism $\varphi_x \colon U_x \to V_x \subseteq \mathbb{R}^m$ where U_x is an open neighborhood of x and V_x is an open subset of \mathbb{R}^m . Since M is compact, the open cover $\{U_x\}_{x \in M}$ admits a finite subcover $\{U_1, \ldots, U_k\}$. Since M is paracompact and Hausdorff, there exists a partition of unity $\{\rho_i\}_{i=1}^k$ with $\operatorname{supp} \rho_i \subseteq U_i$.

For $i = 1, \ldots, k$, define maps $h_i \colon M \to \mathbb{R}^m$ by

$$h_i(x) = \begin{cases} \rho_i(x)\varphi_i(x) & \text{if } x \in U_i \\ 0 & \text{otherwise} \end{cases}$$

These maps h_i are well defined and continuous. Now define the continuous map

$$g: M \to \underbrace{\mathbb{R} \times \ldots \times \mathbb{R}}^{k} \times \underbrace{\mathbb{R}^{m} \times \ldots \times \mathbb{R}^{m}}_{x \mapsto (\rho_{1}(x), \ldots, \rho_{k}(x), h_{1}(x), \ldots, h_{k}(x))}^{k} \cong \mathbb{R}^{k(m+1)}$$

Since M is compact and \mathbb{R}^N is Hausdorff, g is a closed map. To show that g is an embedding, it remains to show that g is injective.

Assume g(x) = g(y) for some $x, y \in M$. Then $\rho_i(x) = \rho_i(y)$ for all *i*. Let *j* be an index where $\rho_i(x) > 0$ and thus $\rho_i(y) = \rho_i(x) > 0$. We obtain

$$h_j(x) = h_j(y)$$

$$\rho_j(x)\varphi_j(x) = \rho_j(y)\varphi_j(y)$$

$$\Rightarrow \varphi_j(x) = \varphi_j(y)$$

$$\Rightarrow x = y$$

since φ_i is injective.

This example illustrates how partitions of unity on a manifold can be useful. Since many interesting manifolds are not compact, it would be useful to know when a (Hausdorff) manifold is paracompact.

Theorem 3.2. Let M be a Hausdorff manifold. Then M is paracompact if and only if each connected component of M is second-countable.

Proof. Let $\{M_i\}_{i \in I}$ be the connected components of M. Recall that manifolds are locally pathconnected. Therefore $M = \coprod_{i \in I} M_i$ is the coproduct of its connected components (which are the same as its path components).

(\Leftarrow) Note that any manifold is locally compact. Since M_i is locally compact and second-countable, it is σ -compact (by 2.12).

Since M_i is locally compact, σ -compact, and Hausdorff, it is paracompact (by 2.13). Since $M = \coprod_{i \in I} M_i$ is a coproduct of paracompact spaces, it is paracompact (c.f. Homework 12 #4).

 (\Rightarrow) Since M_i is connected, locally compact, paracompact, and Hausdorff, it is σ -compact (by 3.3).

Since M_i is σ -compact and every point $x \in M_i$ has a second-countable neighborhood, M_i is second-countable (by 3.4).

Proposition 3.3. Let X be a connected, locally compact, paracompact, Hausdorff space. Then X is σ -compact.

Proposition 3.4. Let X be a σ -compact space such that every point $x \in X$ has a second-countable neighborhood. Then X is second-countable.

Here is another application of partitions of unity.

Proposition 3.5. Every paracompact smooth manifold admits a Riemannian metric.

Yet another application is in defining integration on manifolds. One can define integration within a coordinate chart, and then on the entire manifold using a partition of unity.