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1 Introduction to groupoids

Definition 1.1. A groupoid is a category in which all morphisms are isomorphisms.

Example 1.2. Let G be a group. Consider the groupoid (also denoted G) with one object ∗ and
morphisms

HomG(∗, ∗) := G

where composition is the multiplication in G.

In fact, a locally small groupoid G with one object is the same as a group, namely the data of
a set HomG(∗, ∗) equipped with a binary operation ◦ which is associative and unital and has
inverses.

Example 1.3. Let {Gs}s∈S be a collection of groups, indexed by some set S. One can form the
groupoid G whose objects are Ob(G) = S and morphisms are

HomG(s, s
′) =

{
∅ if s 6= s′

Gs if s = s′.

Definition 1.4. Let G be a locally small groupoid. For any object X ∈ Ob(G), the hom-set

HomG(X,X)

forms a group (under composition), called the vertex group of G at X, or the automorphism
group of X.

This is an instance of a more general phenomenon.

Definition 1.5. Let C be a category and X ∈ Ob(C) an object of C.
An endomorphism of X is a morphism f : X → X from X to itself.

An automorphism of X is a morphism f : X → X which is also an isomorphism.

Let us denote:

IsoC(X, Y ) := {f : X → Y | f is an isomorphism} ⊆ HomC(X, Y )

EndC(X) := HomC(X,X)

AutC(X) := IsoC(X,X).
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If C is locally small, then EndC(X) is a monoid (under composition), called the endomorphism
monoid of X, while AutC(X) is a group, called the automorphism group of X. Note that

AutC(X) = EndC(X)×

is the group of units of EndC(X).

Example 1.6. In Set, let us denote n = {1, 2, . . . , n}. Then

AutSet(n) = Σn

is the symmetric group on n letters, consisting of permutations. The corresponding endomor-
phism monoid

EndSet(n) = {f : n→ n}

consists of all functions n→ n, most of which are not bijective.

Example 1.7. Let F be a field. In VectF, consider the automorphism group

AutVectF(F
n) = GL(n,F)

= {invertible n× n matrices with coefficients in F}.

The corresponding endomorphism monoid is

EndVectF(F
n) = Mn×n(F)

= {all n× n matrices with coefficients in F}.

2 Subcategories

Definition 2.1. A subcategory D of a category C consists of a subclass of objects Ob(D) ⊆
Ob(C) and for all objects X, Y ∈ Ob(D), a subclass of morphisms

HomD(X, Y ) ⊆ HomC(X, Y )

such that morphisms in D contain identity morphisms idX for all X ∈ Ob(D), and are closed
under composition.

In other words, D is a category in its own right, and the inclusion ι : D → C is a functor.

We write D ⊆ C to indicate that D is a subcategory of C.

Example 2.2. Let Ab denote the category of abelian groups and group homomorphisms between
them. Then Ab is a subcategory of Gp, the category of all groups.

Example 2.3. Let FinSet denote the category of finite sets and functions between them. Then
FinSet is a subcategory of Set, the category of all sets.

Those examples are misleading, as they are not typical of what a subcategory looks like in
general.

Definition 2.4. A subcategory D ⊆ C is full if for all objects X, Y ∈ Ob(D), the morphisms
in D satisfy

HomD(X, Y ) = HomC(X, Y ).
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In other words, a full subcategory of C consists of picking some of the objects, and all morphisms
between them.

Example 2.5. The examples Ab ⊆ Gp and FinSet ⊆ Set are full subcategories.

Example 2.6. Let Setinj ⊆ Set denote the subcategory consisting of all sets and injective
functions between them. Then Setinj is not a full subcategory of Set, since there exist functions
that are not injective.

Example 2.7. Let CHaus ⊆ Top be the full subcategory consisting of compact Hausdorff
spaces (and all continuous maps between them).

Let LCH ⊆ Top denote the subcategory consisting of locally compact Hausdorff spaces and
proper maps between them. Then LCH is not a full subcategory of Top, since there are
continuous maps between locally compact Hausdorff spaces that are not proper. However,
considering only proper maps allows us to view the one-point extension as a functor

(−)+ : LCH→ CHaus.

Example 2.8. A map f : (X, dX) → (Y, dY ) between metric spaces is non-expansive if it
satisfies

dY (f(x), f(x′)) ≤ dX(x, x′)

for all x, x′ ∈ X. In other words, f is Lipschitz continuous with Lipschitz constant 1.

Let Met denote the category of metric spaces and non-expansive maps between them.

Let MetLip denote the category of metric spaces and Lipschitz continuous maps between them.
Then MetLip is a subcategory of Met which is not full, since there are Lipschitz continuous
maps whose minimal Lipschitz constant is greater than 1. For example, a dilation f : Rn → Rn

defined by f(x) = cx for some scalar c ∈ R is always Lipschitz continuous with Lipschitz
constant |c|, but f is non-expansive if and only if the condition |c| ≤ 1 holds.

Example 2.9. Let MetTop denote the category of metrizable topological spaces and continuous
maps between them. Then MetTop is a full subcategory of Top.

Note that Met is not a subcategory of Top, because the objects are different. An object of
Met is a metric space (X, dX), which includes the data of a metric. However, there is a forgetful
functor

U : Met→ Top

which associates to a metric space (X, dX) its underlying topological space (X, Tmet) endowed
with the topology induced by dX . By definition, this forgetful functor lands in the subcategory
of metrizable spaces:

Met
U−→MetTop ⊆ Top.

Example 2.10. Let C be a category, and consider the subcategory Ciso having the same objects
as C, but with morphisms

HomCiso(X, Y ) = IsoC(X, Y ).

By construction, Ciso is a groupoid. In fact, it is the maximal subgroupoid of C, in the sense
that any subcategory G ⊆ C which is a groupoid must be contained in Ciso:

G ⊆ Ciso ⊆ C.

In fact, that statement can be slightly generalized.

Exercise 2.11. Let G be a groupoid, C a category, and F : G → C any functor. Show that F
factors through the maximal subgroupoid of C:

G F−→ Ciso ⊆ C.
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