Math 535 - General Topology Additional notes

Martin Frankland

October 31, 2012

1 Introduction to groupoids

Definition 1.1. A groupoid is a category in which all morphisms are isomorphisms.

Example 1.2. Let G be a group. Consider the groupoid (also denoted G) with one object * and morphisms

 $\operatorname{Hom}_G(*,*) := G$

where composition is the multiplication in G.

In fact, a locally small groupoid \mathcal{G} with one object is the same as a group, namely the data of a set $\operatorname{Hom}_{\mathcal{G}}(*,*)$ equipped with a binary operation \circ which is associative and unital and has inverses.

Example 1.3. Let $\{G_s\}_{s\in S}$ be a collection of groups, indexed by some set S. One can form the groupoid \mathcal{G} whose objects are $Ob(\mathcal{G}) = S$ and morphisms are

$$\operatorname{Hom}_{\mathcal{G}}(s,s') = \begin{cases} \emptyset & \text{if } s \neq s' \\ G_s & \text{if } s = s'. \end{cases}$$

Definition 1.4. Let \mathcal{G} be a locally small groupoid. For any object $X \in Ob(\mathcal{G})$, the hom-set

$$\operatorname{Hom}_{\mathcal{G}}(X, X)$$

forms a group (under composition), called the **vertex group** of \mathcal{G} at X, or the **automorphism** group of X.

This is an instance of a more general phenomenon.

Definition 1.5. Let \mathcal{C} be a category and $X \in Ob(\mathcal{C})$ an object of \mathcal{C} .

An endomorphism of X is a morphism $f: X \to X$ from X to itself.

An **automorphism** of X is a morphism $f: X \to X$ which is also an isomorphism.

Let us denote:

$$Iso_{\mathcal{C}}(X,Y) := \{f \colon X \to Y \mid f \text{ is an isomorphism}\} \subseteq Hom_{\mathcal{C}}(X,Y)$$
$$End_{\mathcal{C}}(X) := Hom_{\mathcal{C}}(X,X)$$
$$Aut_{\mathcal{C}}(X) := Iso_{\mathcal{C}}(X,X).$$

If \mathcal{C} is locally small, then $\operatorname{End}_{\mathcal{C}}(X)$ is a monoid (under composition), called the **endomorphism** monoid of X, while $\operatorname{Aut}_{\mathcal{C}}(X)$ is a group, called the **automorphism group** of X. Note that

$$\operatorname{Aut}_{\mathcal{C}}(X) = \operatorname{End}_{\mathcal{C}}(X)^{\times}$$

is the group of units of $\operatorname{End}_{\mathcal{C}}(X)$.

Example 1.6. In **Set**, let us denote $\underline{n} = \{1, 2, \dots, n\}$. Then

$$\operatorname{Aut}_{\operatorname{\mathbf{Set}}}(\underline{n}) = \Sigma_n$$

is the symmetric group on \boldsymbol{n} letters, consisting of permutations. The corresponding endomorphism monoid

$$\operatorname{End}_{\operatorname{Set}}(\underline{n}) = \{f : \underline{n} \to \underline{n}\}\$$

consists of all functions $\underline{n} \to \underline{n}$, most of which are not bijective.

Example 1.7. Let \mathbb{F} be a field. In $\mathbf{Vect}_{\mathbb{F}}$, consider the automorphism group

 $\operatorname{Aut}_{\operatorname{Vect}_{\mathbb{F}}}(\mathbb{F}^n) = GL(n,\mathbb{F})$

 $= \{ \text{invertible } n \times n \text{ matrices with coefficients in } \mathbb{F} \}.$

The corresponding endomorphism monoid is

$$\operatorname{End}_{\operatorname{Vect}_{\mathbb{F}}}(\mathbb{F}^n) = M_{n \times n}(\mathbb{F})$$
$$= \{ \operatorname{all} n \times n \text{ matrices with coefficients in } \mathbb{F} \}.$$

2 Subcategories

Definition 2.1. A subcategory \mathcal{D} of a category \mathcal{C} consists of a subclass of objects $Ob(\mathcal{D}) \subseteq Ob(\mathcal{C})$ and for all objects $X, Y \in Ob(\mathcal{D})$, a subclass of morphisms

$$\operatorname{Hom}_{\mathcal{D}}(X,Y) \subseteq \operatorname{Hom}_{\mathcal{C}}(X,Y)$$

such that morphisms in \mathcal{D} contain identity morphisms id_X for all $X \in \mathrm{Ob}(\mathcal{D})$, and are closed under composition.

In other words, \mathcal{D} is a category in its own right, and the inclusion $\iota: \mathcal{D} \to \mathcal{C}$ is a functor.

We write $\mathcal{D} \subseteq \mathcal{C}$ to indicate that \mathcal{D} is a subcategory of \mathcal{C} .

Example 2.2. Let Ab denote the category of abelian groups and group homomorphisms between them. Then Ab is a subcategory of Gp, the category of all groups.

Example 2.3. Let **FinSet** denote the category of finite sets and functions between them. Then **FinSet** is a subcategory of **Set**, the category of all sets.

Those examples are misleading, as they are not typical of what a subcategory looks like in general.

Definition 2.4. A subcategory $\mathcal{D} \subseteq \mathcal{C}$ is **full** if for all objects $X, Y \in Ob(\mathcal{D})$, the morphisms in \mathcal{D} satisfy

$$\operatorname{Hom}_{\mathcal{D}}(X,Y) = \operatorname{Hom}_{\mathcal{C}}(X,Y)$$

In other words, a full subcategory of \mathcal{C} consists of picking some of the objects, and all morphisms between them.

Example 2.5. The examples $Ab \subseteq Gp$ and $FinSet \subseteq Set$ are full subcategories.

Example 2.6. Let $\mathbf{Set}_{inj} \subseteq \mathbf{Set}$ denote the subcategory consisting of all sets and injective functions between them. Then \mathbf{Set}_{inj} is not a full subcategory of \mathbf{Set} , since there exist functions that are not injective.

Example 2.7. Let **CHaus** \subseteq **Top** be the full subcategory consisting of compact Hausdorff spaces (and all continuous maps between them).

Let $\mathbf{LCH} \subseteq \mathbf{Top}$ denote the subcategory consisting of locally compact Hausdorff spaces and *proper* maps between them. Then \mathbf{LCH} is *not* a full subcategory of \mathbf{Top} , since there are continuous maps between locally compact Hausdorff spaces that are not proper. However, considering only proper maps allows us to view the one-point extension as a functor

$$(-)^+ \colon \mathbf{LCH} \to \mathbf{CHaus}.$$

Example 2.8. A map $f: (X, d_X) \to (Y, d_Y)$ between metric spaces is **non-expansive** if it satisfies

$$d_Y(f(x), f(x')) \le d_X(x, x')$$

for all $x, x' \in X$. In other words, f is Lipschitz continuous with Lipschitz constant 1.

Let Met denote the category of metric spaces and non-expansive maps between them.

Let $\mathbf{Met}_{\mathrm{Lip}}$ denote the category of metric spaces and Lipschitz continuous maps between them. Then $\mathbf{Met}_{\mathrm{Lip}}$ is a subcategory of \mathbf{Met} which is not full, since there are Lipschitz continuous maps whose minimal Lipschitz constant is greater than 1. For example, a dilation $f \colon \mathbb{R}^n \to \mathbb{R}^n$ defined by f(x) = cx for some scalar $c \in \mathbb{R}$ is always Lipschitz continuous with Lipschitz constant |c|, but f is non-expansive if and only if the condition $|c| \leq 1$ holds.

Example 2.9. Let **MetTop** denote the category of metrizable topological spaces and continuous maps between them. Then **MetTop** is a full subcategory of **Top**.

Note that **Met** is *not* a subcategory of **Top**, because the objects are different. An object of **Met** is a metric space (X, d_X) , which includes the data of a metric. However, there is a forgetful functor

$U\colon \mathbf{Met}\to \mathbf{Top}$

which associates to a metric space (X, d_X) its underlying topological space (X, \mathcal{T}_{met}) endowed with the topology induced by d_X . By definition, this forgetful functor lands in the subcategory of metrizable spaces:

$\mathbf{Met} \xrightarrow{U} \mathbf{Met} \mathbf{Top} \subseteq \mathbf{Top}.$

Example 2.10. Let C be a category, and consider the subcategory C_{iso} having the same objects as C, but with morphisms

$$\operatorname{Hom}_{\mathcal{C}_{\operatorname{iso}}}(X,Y) = \operatorname{Iso}_{\mathcal{C}}(X,Y).$$

By construction, C_{iso} is a groupoid. In fact, it is the maximal subgroupoid of C, in the sense that any subcategory $\mathcal{G} \subseteq C$ which is a groupoid must be contained in C_{iso} :

$$\mathcal{G} \subseteq \mathcal{C}_{iso} \subseteq \mathcal{C}.$$

In fact, that statement can be slightly generalized.

Exercise 2.11. Let \mathcal{G} be a groupoid, \mathcal{C} a category, and $F: \mathcal{G} \to \mathcal{C}$ any functor. Show that F factors through the maximal subgroupoid of \mathcal{C} :

$$\mathcal{G} \xrightarrow{F} \mathcal{C}_{iso} \subseteq \mathcal{C}.$$