Math 535 - General Topology Additional notes

Martin Frankland

October 29, 2012

1 More on categories

1.1 Examples of categories

Example 1.1. The category Set of sets and functions between them.

Example 1.2. The category Gp of groups and group homomorphisms between them.

Example 1.3. For any field \mathbb{F} , the category $\mathbf{Vect}_{\mathbb{F}}$ of vector spaces over \mathbb{F} and \mathbb{F} -linear transformations between them.

Example 1.4. The category **Top** of topological spaces and continuous functions between them.

Example 1.5. The homotopy category of spaces h**Top** whose objects are topological spaces, and morphisms are homotopy classes of continuous functions:

$$\operatorname{Hom}_{h\mathbf{Top}}(X,Y) := [X,Y] := \operatorname{Hom}_{\mathbf{Top}}(X,Y)/\simeq .$$

Example 1.6. Let G be a group. Consider the category (also denoted G) with one object * and morphisms

 $\operatorname{Hom}_G(*,*) := G$

where composition is the multiplication in G.

Example 1.7. Let M be a monoid. Consider the category (also denoted M) with one object * and morphisms

$$\operatorname{Hom}_M(*,*) := M$$

where composition is the multiplication in M.

Definition 1.8. A category \mathcal{C} is **locally small** if for all objects $X, Y \in Ob(\mathcal{C})$, the class $Hom_{\mathcal{C}}(X, Y)$ of morphisms from X to Y forms a set, called the **hom-set** from X to Y.

Remark 1.9. A locally small category C with one object is the same as a monoid, namely the data of a set Hom_C(*, *) equipped with a binary operation \circ which is associative and unital.

1.2 Isomorphisms

Definition 1.10. A morphism $f: X \to Y$ in a category \mathcal{C} is an **isomorphism** if there exists a morphism $g: Y \to X$ satisfying $g \circ f = \operatorname{id}_X$ and $f \circ g = \operatorname{id}_Y$.

If such a g exists, then it is unique and called the **inverse** of f, denoted $g = f^{-1}$.

Example 1.11. Isomorphisms in **Set** are invertible functions, which is equivalent to being bijective.

Example 1.12. Isomorphisms in \mathbf{Gp} are group isomorphisms, which is equivalent to being a bijective group homomorphism.

Example 1.13. Isomorphisms in $\mathbf{Vect}_{\mathbb{F}}$ are linear isomorphisms, which is equivalent to being a bijective linear transformation.

Example 1.14. Isomorphisms in **Top** are homeomorphisms, which is *stronger* than being a bijective continuous map.

Example 1.15. Isomorphisms in h**Top** are homotopy equivalences. This proves in particular that a homotopy inverse (if it exists) is unique up to homotopy.

Example 1.16. Let G be a group. In the one-object category G, every morphism is invertible, with inverse g^{-1} as in the group G.

Example 1.17. Let M be a monoid. In the one-object category M, the isomorphisms are

 $M^{\times} := \{ m \in M \mid m \text{ has an inverse in } M \}$

a.k.a. the group of units of the monoid M.

2 Functors

2.1 The basics

Definition 2.1. A functor $F: \mathcal{C} \to \mathcal{D}$ between categories \mathcal{C} and \mathcal{D} is an assignment that takes objects of \mathcal{C} to objects of \mathcal{D}

$$F: \operatorname{Ob}(\mathcal{C}) \to \operatorname{Ob}(\mathcal{D})$$

and morphisms in \mathcal{C} to morphisms in \mathcal{D}

$$F: \operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}_{\mathcal{D}}(F(X), F(Y))$$

in a way that preserves composition and identities:

$$F(g \circ f) = F(g) \circ F(f)$$
$$F(\mathrm{id}_X) = \mathrm{id}_{F(X)}.$$

Schematically:

2.2 Examples of functors

2.2.1 From algebra

Example 2.2. $U: \mathbf{Gp} \to \mathbf{Set}$ the underlying set functor, which associates to a group its underlying set.

Remark 2.3. The functor U forgets the group structure of G. For this reason, a functors of that type is often called a *forgetful functor*.

Example 2.4. $F: \mathbf{Set} \to \mathbf{Gp}$ the free group functor.

Remark 2.5. A group homomorphism from a free group $F(S) \to H$ is determined by its values on all "letters" $s \in S$, and there is no constraint in the choice of said values. In other words, the data of a group homomorphism $F(S) \to H$ is the same as a function between sets $S \to U(H)$. In fact, there is a natural bijection

 $\operatorname{Hom}_{\mathbf{Gp}}(F(S), H) \cong \operatorname{Hom}_{\mathbf{Set}}(S, U(H)).$

We say that F is **left adjoint** to U, or U is **right adjoint** to F.

2.2.2 From topology

Example 2.6. $U: \mathbf{Top} \to \mathbf{Set}$ the underlying set functor, which associates to a topological space (X, \mathcal{T}) its underlying set X.

Example 2.7. Dis: Set \rightarrow Top the discrete space functor, which associates to a set S the topological space (S, \mathcal{T}_{dis}) endowed with the discrete topology.

Remark 2.8. Because every function from a discrete space is continuous, there is a natural bijection

 $\operatorname{Hom}_{\operatorname{Top}}(\operatorname{Dis}(S), (Y, \mathcal{T})) \cong \operatorname{Hom}_{\operatorname{Set}}(S, U(Y, \mathcal{T}))$

which exhibits D is as left adjoint to $U: \mathbf{Top} \to \mathbf{Set}$.

Example 2.9. Anti: Set \rightarrow Top the anti-discrete space functor, which associates to a set S the topological space (S, \mathcal{T}_{anti}) endowed with the anti-discrete topology.

Remark 2.10. Because every function to an anti-discrete space is continuous, there is a natural bijection

$$\operatorname{Hom}_{\operatorname{Top}}((X,\mathcal{T}),\operatorname{Anti}(S)) \cong \operatorname{Hom}_{\operatorname{Set}}(U(X,\mathcal{T}),S)$$

which exhibits Anti as right adjoint to $U: \mathbf{Top} \to \mathbf{Set}$.

Example 2.11. Let **CHaus** denote the category of compact Hausdorff spaces and continuous maps between them. Then the Stone-Čech construction

$\beta \colon \mathbf{Top} \to \mathbf{CHaus}$

is a functor (c.f. HW 10 Problem 1). By the universal property of β , there is a natural bijection

$$\operatorname{Hom}_{\mathbf{CHaus}}(\beta X, K) \cong \operatorname{Hom}_{\mathbf{Top}}(X, \iota K)$$

which exhibits β as left adjoint to the inclusion functor $\iota \colon \mathbf{CHaus} \to \mathbf{Top}$.

Example 2.12. Let T_0 **Top** denote the category of T_0 spaces and continuous maps between them. Then the Kolgomorov quotient

$$KQ: \mathbf{Top} \to T_0\mathbf{Top}$$

defines a functor (c.f. HW 6 Problem 2). By the universal property of KQ, there is a natural bijection

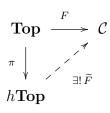
$$\operatorname{Hom}_{T_0 \operatorname{Top}} (KQ(X), Y) \cong \operatorname{Hom}_{\operatorname{Top}} (X, \iota Y)$$

which exhibits KQ as left adjoint to the inclusion functor $\iota: T_0 \mathbf{Top} \to \mathbf{Top}$.

2.2.3 From homotopy theory

Example 2.13. Consider the quotient functor π : **Top** $\to h$ **Top** which does nothing to objects, and sends a continuous map $f: X \to Y$ to its homotopy class $\pi(f) = [f]: X \to Y$.

Given any functor $F: \mathbf{Top} \to \mathcal{C}$, there is a (unique) factorization $F = \widetilde{F} \circ \pi$ if and only if F(f) depends only on the homotopy class of f, i.e. we have F(f) = F(f') whenever $f \simeq f'$ are homotopic.



Such a functor $F: \mathbf{Top} \to \mathcal{C}$ is called a **homotopy functor**. Example 2.14. The path components functor

 $\pi_0 \colon \mathbf{Top} \to \mathbf{Set}$

is a homotopy functor (c.f. HW 9 Problem 6).

3 Pointed spaces

Definition 3.1. A **pointed space** (or based space) consists of a pair (X, x_0) where X is a topological space and $x_0 \in X$. The point x_0 is called the **basepoint** of X.

Definition 3.2. A pointed (or based) map $f: (X, x_0) \to (Y, y_0)$ between pointed spaces is a continuous map that preserves the basepoint i.e. $f(x_0) = y_0$.

Note that a composite $g \circ f$ of pointed maps f and g is pointed, and the identity

$$\mathrm{id}_{(X,x_0)}\colon (X,x_0)\to (X,x_0)$$

is pointed.

Notation 3.3. Let Top_* denote the category of pointed spaces and pointed maps between them.

Remark 3.4. The disjoint basepoint construction

$$(-)_+ \colon \mathbf{Top} o \mathbf{Top}_*$$

is a functor (c.f. HW 10 Problem 2).

Example 3.5. Assume X is path-connected and $C \subseteq Y$ is the path component of the basepoint $y_0 \in Y$. Then any pointed map

$$f\colon (X,x_0)\to (Y,y_0)$$

must land within C, which implies

$$\operatorname{Hom}_{\mathbf{Top}_{*}}((X, x_{0}), (Y, y_{0})) \cong \operatorname{Hom}_{\mathbf{Top}_{*}}((X, x_{0}), (C, y_{0}))$$

Definition 3.6. A pointed (or based) homotopy between pointed maps $f_0, f_1: (X, x_0) \rightarrow (Y, y_0)$ is a homotopy

 $F: X \times [0,1] \to Y$

between f_0 and f_1 such that every intermediate map

$$f_t\colon (X,x_0)\to (Y,y_0)$$

is also pointed, i.e. $F(x_0, t) = y_0$ for all $t \in [0, 1]$.

Example 3.7. A loop in X based at x_0 is a pointed map from the circle

$$\gamma \colon (S^1, *) \to (X, x_0).$$

A pointed homotopy of such loops is a homotopy that remains based at x_0 the entire time. *Exercise* 3.8. Show that pointed homotopy \simeq is an equivalence relation on the set of pointed maps between pointed spaces (X, x_0) and (Y, y_0) . Notation 3.9. Denote by

$$[(X, x_0), (Y, y_0)]_* := \operatorname{Hom}_{\mathbf{Top}_*}((X, x_0), (Y, y_0))/\simeq$$

the set of pointed homotopy classes of pointed maps from (X, x_0) to (Y, y_0) .

Example 3.10. Let $P \simeq *$ be a contractible space. For (unbased) homotopy, we have

$$[P,Y] \cong \pi_0(Y).$$

Assume that P (strongly) deformation retracts onto a point $p_0 \in P$. Then for based homotopy, we have

$$[(P, p_0), (Y, y_0)]_* = \{*\}$$

because every pointed map $(P, p_0) \to (Y, y_0)$ is pointed-homotopic to the constant map at y_0 . *Exercise* 3.11. Show that pointed homotopy is compatible with composition of pointed maps in the following sense. Given pointed maps

$$f_0, f_1 \colon (X, x_0) \to (Y, y_0)$$

 $g_0, g_1 \colon (Y, y_0) \to (Z, z_0),$

the conditions $f_0 \simeq f_1$ and $g_0 \simeq g_1$ imply $g_0 \circ f_0 \simeq g_1 \circ f_1$.

Therefore one can compose pointed homotopy classes of pointed maps.

Definition 3.12. The homotopy category of pointed spaces hTop_{*} has as objects pointed spaces, and morphisms are pointed homotopy classes of pointed maps:

$$\operatorname{Hom}_{h\mathbf{Top}_{*}}((X, x_{0}), (Y, y_{0})) := [(X, x_{0}), (Y, y_{0})]_{*}$$
$$= \operatorname{Hom}_{\mathbf{Top}_{*}}((X, x_{0}), (Y, y_{0}))/\simeq$$