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Proposition 0.1. Let A ⊆ X be a connected subspace of a topological space X, and E ⊆ X
satisfying A ⊆ E ⊆ A. Then E is connected.

1 Connected components

Definition 1.1. Consider the relation ∼ on X defined by x ∼ y if there exists a connected
subspace A ⊆ X with x, y ∈ A. Then ∼ is an equivalence relation, and the equivalence classes
are called the connected components of X.

Proposition 1.2. 1. Let Z ⊆ X be a connected subspace. Then Z lies entirely within one
connected component of X.

2. Each connected component C ⊆ X is connected.

3. Each connected component C ⊆ X is closed in X.

Remark 1.3. In particular, the connected component Cx of a point x ∈ X is the largest con-
nected subspace of X that contains x.

Exercise 1.4. A topological space X is totally disconnected if its only connected subspaces
are singletons {x}. Show that X is totally disconnected if and only if for all x ∈ X, the
connected component Cx of x is the singleton {x}.
Exercise 1.5. Show that a topological space X is the coproduct of its connected components if
and only if the space X/∼ of connected components (with the quotient topology) is discrete.

2 Path-connectedness

Definition 2.1. Let X be a topological space and let x, y ∈ X. A path in X from x to y is a
continuous map γ : [a, b]→ X satisfying γ(a) = x and γ(b) = y. Here a, b ∈ R satisfy a < b.

Definition 2.2. A topological space is path-connected is for any x, y ∈ X, there is a path
from x to y.

Proposition 2.3. Let X be a path-connected space. Then X is connected.

The converse does not hold in general.
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Example 2.4 (Topologist’s sine curve). The space

A = {(x, y) ∈ R2 | x > 0, y = sin
1

x
} ⊂ R2

is path-connected, and therefore connected. By Proposition 0.1, its closure

A = A ∪ ({0} × [−1, 1])

is also connected. However, A is not path-connected.

Proposition 2.5. Let f : X → Y be a continuous map, where X is path-connected. Then f(X)
is path-connected.

3 Path components

Definition 3.1. Consider the relation ∼ on X defined by x ∼ y if there exists a path from
x to y. Then ∼ is an equivalence relation, and the equivalence classes are called the path
components of X.

Note that there exists a path γ : [a, b] → X from x to y if and only if there exists a path
σ : [0, 1]→ X from x to y, taking for example

σ(t) := γ (a+ t(b− a)) .

We will often assume that the domain of parametrization is [0, 1].

Proof that ∼ is an equivalence relation.

1. Reflexivity: The constant path γ : [0, 1] → X defined by γ(t) = x for all t ∈ [0, 1] is
continuous. This proves x ∼ x.

2. Symmetry: Assume x ∼ y, i.e. there is a path γ : [0, 1]→ X with endpoints γ(0) = x and
γ(1) = y. Then γ̃ : [0, 1]→ X defined by

γ̃(t) = γ(1− t)

is continuous, since the flip t 7→ 1− t is a homeomorphism of [0, 1] onto itself. Moreover
γ̃ has endpoints γ̃(0) = γ(1) = y and γ̃(1) = γ(0) = x, which proves y ∼ x.

3. Transitivity: Assume x ∼ y and y ∼ z, i.e. there are paths α, β : [0, 1] → X from x to y
and from y to z respectively. Define the concatenation of the two paths α and β as the
path going through α at double speed, followed by β at double speed:

(α ∗ β)(t) =

{
α(2t) if 0 ≤ t ≤ 1

2

β
(
2(t− 1

2
)
)

if 1
2
≤ t ≤ 1.

This formula is well defined, because for t = 1
2

we have α(1) = y = β(0).

Moreover, α∗β is continuous, because its restrictions to the closed subsets [0, 1
2
] and [1

2
, 1]

are continuous, and we have [0, 1] = [0, 1
2
] ∪ [1

2
, 1].

Finally, α ∗ β has endpoints (α ∗ β)(0) = α(0) = x and (α ∗ β)(1) = β(1) = z, which
proves x ∼ z.
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Example 3.2. Recall the topologist’s sine curve

A = {(x, y) ∈ R2 | x > 0, y = sin
1

x
} ⊂ R2

and its closure
A = A ∪ ({0} × [−1, 1])

which is connected, and therefore has only one connected component.

However, A has exactly two path components: the curve A and the segment {0} × [−1, 1].

Note that A is not closed in A, so that path components need NOT be closed in general, unlike
connected components.

Proposition 3.3. Each path component of X is entirely contained within a connected compo-
nent of X. In other words, each connected component is a (disjoint) union of path components.

Proof. If two points x and y are connected by a path γ : [a, b]→ X, then they are both contained
in the connected subspace γ([a, b]) ⊆ X.

Exercise 3.4. Let {Ai}i∈I be a collection of path-connected subspaces of X and A ⊆ X a path-
connected subspace satisfying A ∩ Ai 6= ∅ for all i ∈ I. Show that the union

⋃
i∈I Ai ∪ A is

path-connected.

In particular, if A and B are two path-connected subspaces of X satisfying A ∩ B 6= ∅, then
their union A ∪B is path-connected.

Proposition 3.5. 1. Let Z ⊆ X be a path-connected subspace. Then Z lies entirely within
one path component of X.

2. Each path component C ⊆ X is path-connected.

Remark 3.6. In particular, the path component Cx of a point x ∈ X is the largest path-
connected subspace of X that contains x.
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