Math 535 - General Topology Additional notes

Martin Frankland

October 15, 2012

1 Stone-Čech compactification

Let X be a topological space and consider the set of all continuous functions on X with values in [0, 1]

$$C := \{ f \colon X \to [0, 1] \mid f \text{ is continuous} \}.$$

Consider the set $[0,1]^C \cong \prod_{f \in C} [0,1]$ of all functions from C to [0,1], endowed with the product topology. Consider the evaluation map

$$e \colon X \to [0,1]^C$$
$$x \mapsto (f(x))_{f \in C}$$

so that e(x) is "evaluation at x".

Definition 1.1. The **Stone-Čech construction** on X is the space $\beta X := \overline{e(X)}$ together with the map $e: X \to \beta X$.

Note that e(X) is dense in βX , and βX is always compact Hausdorff. The map $e: X \to \beta X$ is an embedding if and only if X is Tychonoff $(T_{3\frac{1}{2}})$, in which case $e: X \to \beta X$ is a compactification of X, called the **Stone-Čech compactification** of X.

Theorem 1.2. Let X be a topological space. Then the Stone-Čech construction $e: X \to \beta X$ satisfies the following universal property. For any compact Hausdorff space K and any continuous map $f: X \to K$, there is a unique continuous map $g: \beta X \to K$ satisfying $g \circ e = f$, that is, making the diagram

commute.

Remark 1.3. As usual, because $e: X \to \beta X$ satisfies a universal property, it is unique up to unique isomorphism. More precisely, if $e': X \to Z$ is a continuous map to a compact Hausdorff space Z thas satisfies the universal property of theorem 1.2, then there is a unique

homeomorphism $h: \beta X \xrightarrow{\cong} Z$ which is compatible with the evaluation maps, meaning $h \circ e = e'$, i.e. making the diagram

commute.

"The" Stone-Čech construction may as well refer to any such $e': X \to Z$. Definition 1.1 provided one specific construction which works.

Corollary 1.4. Let X be a Tychonoff space, and $f: X \to \mathbb{R}$ a bounded continuous function. Then f admits a unique continuous extension to βX .

Remark 1.5. The extension property in 1.4 characterizes the Stone-Čech compactification. If $e': X \to Z$ is a Hausdorff compactification of X that satisfies the extension property for bounded real-valued functions, then $e': X \to Z$ is the Stone-Čech compactification of X.