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1 Separation axioms

Definition 1.1. A topological space X is called:

e T\ or Kolmogorov if any distinct points are topologically distinguishable: For x,y € X
with = # y, there is an open subset U C X containing one of the two points but not the
other.

e T if any distinct points are separated (i.e. not in the closure of the other): For z,y € X
with x # y, there are open subsets U,,U, C X satistying x € U, but y ¢ U,, whereas
y € U, but x ¢ U,.

e T, or Hausdorff if any distinct points can be separated by neighborhoods: For z,y € X
with & # y, there are open subsets U,, U, C X satistying « € U,, y € U,, and U,NU, = 0.

e regular if points and closed sets can be separated by neighborhoods: For x € X and
C' C X closed with « ¢ C| there are open subsets U,, Us C X satisfying « € U,, C' C Ug,
and U, NUex = 0.

e T if it is 17 and regular.

e completely regular if points and closed sets can be separated by functions: For x € X
and C' C X closed with x ¢ C, there is a continuous function f: X — [0, 1] satisfying
f(z) =0and f|lc = 1.

° T3% or Tychonoff if it is 77 and completely regular.

e normal if closed sets can be separated by neighborhoods: For A, B C X closed and
disjoint, there are open subsets U,V C X satisfying AC U, BCV,and UNV = 0.

e T, if it is T} and normal.

There are implications Ty = T3 = Ty, = T} = T} as well as Tgé = T5. By Urysohn’s lemma
(see 4.1), the implication T} = Tgé also holds, so that the chain can be written as

T4:>T3%:>T3:>T2:>T1:>To

where each implication is strict (i.e. there are counter-examples to the reverse direction).

1



2 Equivalent characterizations

Proposition 2.1. The following are equivalent.

1. X s Tl-
2. FEvery singleton {x} is closed in X.

3. For every x € X, we have

{z}= () N
all neighborhoods
N of

Proposition 2.2. The following are equivalent.
1. X is TQ.
2. The diagonal A C X x X s closed in X x X.

3. For every x € X, we have

{z} = N C.
closed neighborhoods

C of x
Proposition 2.3. The following are equivalent.
1. X 1s reqular.

2. For every x € X, any neighborhood of x contains a closed neighborhood of x. In other
words, closed neighborhoods form a neighborhood basis of x.

3. Given x € U where U s open, there exists an open V C X satisfying
reVCVCU

Proposition 2.4. The following are equivalent.

1. X 1s normal.
2. For every A C X closed, any neighborhood of A contains a closed neighborhood of A.

3. Given A C U where A is closed and U is open, there exists an open V C X satisfying

ACV CVCU.

3 A few properties

Proposition 3.1. Behavior of subspaces.

1. A subspace of a Ty space is Ty.

2. A subspace of a T space is T}.



3. A subspace of a Ty space is T;.
4. A subspace of a regular (resp. T3) space is reqular (resp. T3).
5. A subspace of a completely reqular (resp. T3%) space is completely reqular (resp. T3%).
6. A CLOSED subspace of a normal (resp. Ty) space is normal (resp. Ty ).
Remark 3.2. A subspace of a normal space need NOT be normal in general.

Proposition 3.3. Behavior of (arbitrary) products.

1. A product of Ty spaces is Tj.

2. A product of T spaces is T}.

3. A product of Ty spaces is Ty.

4. A product of reqular (resp. Ts) spaces is reqular (resp. Ts).

5. A product of completely reqular (resp. T3§) spaces is completely reqular (resp. TS%).
Remark 3.4. A product of normal spaces need NOT be normal in general, even a finite product.
Proposition 3.5. Any compact Hausdorff space is Ty. See HW J Problem 6.

Proposition 3.6. Any metric space is Ty (in fact Tg). See HW 6 Problem 3.

4 Urysohn’s lemma

Theorem 4.1 (Urysohn’s lemma). Let X be a normal space. Then closed subsets of X can
be separated by functions: For A, B C X closed and disjoint, there is a continuous function

f: X —[0,1] satisfying f(a) =0 for alla € A and f(b) =1 for allb € B.

Such a function is sometimes called an Urysohn function for A and B.

Proof. Step 1: Construction.

Since A and B are disjoint, the inclusion A C B¢ =: U; holds, and note that A is closed and
U, is open.

Since X is normal, there is an open U 1 satisfying

AQU%QU_%QUL

Consider the inclusion A C U 1 where A is closed and U 1 is open. There is an open Uz satisfying
ACUL CUs C UL
4 4 2

Likewise, consider U_% C U; where U_% is closed and U; is open. There is an open U 3 satisfying

Repeating the process, we obtain for every “dyadic rational” r = 2% for some n > 0 and
0 < k < 2™ an open subset U, satisfying



o ACU, for all r;

e U, C U, whenever r < s.

In particular we have U, C U; = B¢ for all r, i.e. every U, is disjoint from B.

Define the function f: X — [0, 1] by the formula

fla) = 1 if x belongs to no U,
- |inf{r |z e U,} otherwise.

Claim: f is an Urysohn function for A and B.

Step 2: Verification.

First, note that the dyadic rationals in (0, 1] are dense in [0, 1].

The condition A C U, for all r implies f|4 = 0.

The condition BN U, = () for all r implies f|p = 1.

It remains to show that f is continuous. This follows from two facts.

Fact A: z € U, = f(z) < r. Indeed, the inclusion U, C U, holds for all s > r, and s can be
made arbitrarily close to r.

Fact B: © ¢ U, = f(xz) > r. This is because the set {s | z € Uy} is upward closed, and thus
cannot contain numbers ¢ < r if r is not in the set. This implies r < inf{s | z € U} = f(z).

Continuity where f = 0.

Assume f(xz) = 0, and let € > 0. Let r be a dyadic rational in (0,€¢). Then we have x € U,
(by fact B) and f(y) < r < e for all y € U, (by fact A). Since U, is a neighborhood of z, f is
continuous at x.

Continuity where f = 1.

Assume f(z) =1, and let € > 0. Let r be a dyadic rational in (1 —¢,1). Then we have z € [
(by fact A) and f(y) >r >1—eforally € U, (by fact B). Since U, is a neighborhood of z,
f is continuous at x.

Continuity where 0 < f < 1.

Assume 0 < f(x) < 1, and let € > 0. Take r, s dyadic rationals satisfying
flz)—e<r<f(z)<s< f(z)+e

This implies z € U, (by fact B) and z € U,* (by fact A), in other words = € U, \ U,, which is
a neighborhood of .

Every y € U, satisfies f(y) < s (by fact A), whereas every y € U," satisfies f(y) > r (by fact
B), so that the inequality

flx)—e<r<fly) <s< f(z)+e

holds for all y € U, \ U,. This proves continuity of f at x. O

Alternate proof of continuity. Since intervals of the form [0, ) or (a, 1] form a subbasis for the
topology of [0, 1], it suffices to show that their preimages f~*[0, ) and f~!(c, 1] are open in X.



Consider the equivalent statements:

€ f0,a) & flr)<a

& There is a dyadic rational r < « satisfying x € U,

S e UUT'

r<a

This proves the equality

0.0 =JUu

r<a

which is open in X since each U, is open.
Likewise, consider the equivalent statements:
v€ fHa,1] & flr)>a
< There is a dyadic rational s > « satisfying = ¢ Uy

& There is a dyadic rational r > « satisfying = ¢ U,

sre U
r>o
This proves the equality
f e )= T"
r>o
which is open in X since each U, is open. O

Remark 4.2. The result is trivially true if either A or B is empty, but the proof still works!

Remark 4.3. The Urysohn function need not separate A and B precisely. In other words, there
can be points © ¢ A where f(z) = 0 and points y ¢ B where f(y) = 1.



