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1 Separation axioms

Definition 1.1. A topological space X is called:

• T0 or Kolmogorov if any distinct points are topologically distinguishable: For x, y ∈ X
with x 6= y, there is an open subset U ⊂ X containing one of the two points but not the
other.

• T1 if any distinct points are separated (i.e. not in the closure of the other): For x, y ∈ X
with x 6= y, there are open subsets Ux, Uy ⊂ X satisfying x ∈ Ux but y /∈ Ux, whereas
y ∈ Uy but x /∈ Uy.

• T2 or Hausdorff if any distinct points can be separated by neighborhoods: For x, y ∈ X
with x 6= y, there are open subsets Ux, Uy ⊂ X satisfying x ∈ Ux, y ∈ Uy, and Ux∩Uy = ∅.

• regular if points and closed sets can be separated by neighborhoods: For x ∈ X and
C ⊂ X closed with x /∈ C, there are open subsets Ux, UC ⊂ X satisfying x ∈ Ux, C ⊂ UC ,
and Ux ∩ UC = ∅.

• T3 if it is T1 and regular.

• completely regular if points and closed sets can be separated by functions: For x ∈ X
and C ⊂ X closed with x /∈ C, there is a continuous function f : X → [0, 1] satisfying
f(x) = 0 and f |C ≡ 1.

• T31
2

or Tychonoff if it is T1 and completely regular.

• normal if closed sets can be separated by neighborhoods: For A,B ⊂ X closed and
disjoint, there are open subsets U, V ⊂ X satisfying A ⊆ U , B ⊆ V , and U ∩ V = ∅.

• T4 if it is T1 and normal.

There are implications T4 ⇒ T3 ⇒ T2 ⇒ T1 ⇒ T0 as well as T3 1
2
⇒ T3. By Urysohn’s lemma

(see 4.1), the implication T4 ⇒ T3 1
2

also holds, so that the chain can be written as

T4 ⇒ T3 1
2
⇒ T3 ⇒ T2 ⇒ T1 ⇒ T0

where each implication is strict (i.e. there are counter-examples to the reverse direction).
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2 Equivalent characterizations

Proposition 2.1. The following are equivalent.

1. X is T1.

2. Every singleton {x} is closed in X.

3. For every x ∈ X, we have

{x} =
⋂

all neighborhoods
N of x

N.

Proposition 2.2. The following are equivalent.

1. X is T2.

2. The diagonal ∆ ⊆ X ×X is closed in X ×X.

3. For every x ∈ X, we have

{x} =
⋂

closed neighborhoods
C of x

C.

Proposition 2.3. The following are equivalent.

1. X is regular.

2. For every x ∈ X, any neighborhood of x contains a closed neighborhood of x. In other
words, closed neighborhoods form a neighborhood basis of x.

3. Given x ∈ U where U is open, there exists an open V ⊆ X satisfying

x ∈ V ⊆ V ⊆ U.

Proposition 2.4. The following are equivalent.

1. X is normal.

2. For every A ⊆ X closed, any neighborhood of A contains a closed neighborhood of A.

3. Given A ⊆ U where A is closed and U is open, there exists an open V ⊆ X satisfying

A ⊆ V ⊆ V ⊆ U.

3 A few properties

Proposition 3.1. Behavior of subspaces.

1. A subspace of a T0 space is T0.

2. A subspace of a T1 space is T1.
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3. A subspace of a T2 space is T2.

4. A subspace of a regular (resp. T3) space is regular (resp. T3).

5. A subspace of a completely regular (resp. T3 1
2
) space is completely regular (resp. T3 1

2
).

6. A CLOSED subspace of a normal (resp. T4) space is normal (resp. T4).

Remark 3.2. A subspace of a normal space need NOT be normal in general.

Proposition 3.3. Behavior of (arbitrary) products.

1. A product of T0 spaces is T0.

2. A product of T1 spaces is T1.

3. A product of T2 spaces is T2.

4. A product of regular (resp. T3) spaces is regular (resp. T3).

5. A product of completely regular (resp. T3 1
2
) spaces is completely regular (resp. T3 1

2
).

Remark 3.4. A product of normal spaces need NOT be normal in general, even a finite product.

Proposition 3.5. Any compact Hausdorff space is T4. See HW 4 Problem 6.

Proposition 3.6. Any metric space is T4 (in fact T6). See HW 6 Problem 3.

4 Urysohn’s lemma

Theorem 4.1 (Urysohn’s lemma). Let X be a normal space. Then closed subsets of X can
be separated by functions: For A,B ⊆ X closed and disjoint, there is a continuous function
f : X → [0, 1] satisfying f(a) = 0 for all a ∈ A and f(b) = 1 for all b ∈ B.

Such a function is sometimes called an Urysohn function for A and B.

Proof. Step 1: Construction.

Since A and B are disjoint, the inclusion A ⊆ Bc =: U1 holds, and note that A is closed and
U1 is open.

Since X is normal, there is an open U 1
2

satisfying

A ⊆ U 1
2
⊆ U 1

2
⊆ U1.

Consider the inclusion A ⊆ U 1
2

where A is closed and U 1
2

is open. There is an open U 1
4

satisfying

A ⊆ U 1
4
⊆ U 1

4
⊆ U 1

2
.

Likewise, consider U 1
2
⊆ U1 where U 1

2
is closed and U1 is open. There is an open U 3

4
satisfying

U 1
2
⊆ U 3

4
⊆ U 3

4
⊆ U1.

Repeating the process, we obtain for every “dyadic rational” r = k
2n

for some n ≥ 0 and
0 < k ≤ 2n an open subset Ur satisfying
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• A ⊆ Ur for all r;

• Ur ⊆ Us whenever r < s.

In particular we have Ur ⊆ U1 = Bc for all r, i.e. every Ur is disjoint from B.

Define the function f : X → [0, 1] by the formula

f(x) =

{
1 if x belongs to no Ur

inf{r | x ∈ Ur} otherwise.

Claim: f is an Urysohn function for A and B.

Step 2: Verification.

First, note that the dyadic rationals in (0, 1] are dense in [0, 1].

The condition A ⊆ Ur for all r implies f |A ≡ 0.

The condition B ∩ Ur = ∅ for all r implies f |B ≡ 1.

It remains to show that f is continuous. This follows from two facts.

Fact A: x ∈ Ur ⇒ f(x) ≤ r. Indeed, the inclusion Ur ⊆ Us holds for all s > r, and s can be
made arbitrarily close to r.

Fact B: x /∈ Ur ⇒ f(x) ≥ r. This is because the set {s | x ∈ Us} is upward closed, and thus
cannot contain numbers q < r if r is not in the set. This implies r ≤ inf{s | x ∈ Us} = f(x).

Continuity where f = 0.

Assume f(x) = 0, and let ε > 0. Let r be a dyadic rational in (0, ε). Then we have x ∈ Ur
(by fact B) and f(y) ≤ r < ε for all y ∈ Ur (by fact A). Since Ur is a neighborhood of x, f is
continuous at x.

Continuity where f = 1.

Assume f(x) = 1, and let ε > 0. Let r be a dyadic rational in (1− ε, 1). Then we have x ∈ Ur
c

(by fact A) and f(y) ≥ r > 1− ε for all y ∈ Ur
c

(by fact B). Since Ur
c

is a neighborhood of x,
f is continuous at x.

Continuity where 0 < f < 1.

Assume 0 < f(x) < 1, and let ε > 0. Take r, s dyadic rationals satisfying

f(x)− ε < r < f(x) < s < f(x) + ε.

This implies x ∈ Us (by fact B) and x ∈ Ur
c

(by fact A), in other words x ∈ Us \ Ur, which is
a neighborhood of x.

Every y ∈ Us satisfies f(y) ≤ s (by fact A), whereas every y ∈ Ur
c

satisfies f(y) ≥ r (by fact
B), so that the inequality

f(x)− ε < r ≤ f(y) ≤ s < f(x) + ε

holds for all y ∈ Us \ Ur. This proves continuity of f at x.

Alternate proof of continuity. Since intervals of the form [0, α) or (α, 1] form a subbasis for the
topology of [0, 1], it suffices to show that their preimages f−1[0, α) and f−1(α, 1] are open in X.
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Consider the equivalent statements:

x ∈ f−1[0, α)⇔ f(x) < α

⇔ There is a dyadic rational r < α satisfying x ∈ Ur

⇔ x ∈
⋃
r<α

Ur.

This proves the equality

f−1[0, α) =
⋃
r<α

Ur

which is open in X since each Ur is open.

Likewise, consider the equivalent statements:

x ∈ f−1(α, 1]⇔ f(x) > α

⇔ There is a dyadic rational s > α satisfying x /∈ Us

⇔ There is a dyadic rational r > α satisfying x /∈ Ur

⇔ x ∈
⋃
r>α

Ur
c
.

This proves the equality

f−1(α, 1] =
⋃
r>α

Ur
c

which is open in X since each Ur
c

is open.

Remark 4.2. The result is trivially true if either A or B is empty, but the proof still works!

Remark 4.3. The Urysohn function need not separate A and B precisely. In other words, there
can be points x /∈ A where f(x) = 0 and points y /∈ B where f(y) = 1.
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