Math 535 - General Topology Additional notes

Martin Frankland

September 28, 2012

1 Compactness and completeness in metric spaces

Definition 1.1. A sequence $(x_n)_{n \in \mathbb{N}}$ in a metric space (X, d) is a **Cauchy sequence** if for any $\epsilon > 0$, there is an index $N \in \mathbb{N}$ satisfying

$$d(x_m, x_n) < \epsilon$$

for all $m, n \geq N$.

Equivalently: $\lim_{n\to\infty} \sup_{k\in\mathbb{N}} d(x_n, x_{n+k}) = 0.$

Definition 1.2. A metric space (X, d) is **complete** if every Cauchy sequence in X converges.

Example 1.3. The real line \mathbb{R} is complete, whereas the interval (0,1) is not complete.

Exercise 1.4. Let X be a complete metric space and $C \subseteq X$ a closed subset. Show that C is complete.

Slogan: "closed in complete is complete".

Definition 1.5. A metric space (X, d) is **totally bounded** if for every $\epsilon > 0$, X can be covered by finitely many ϵ -balls.

Theorem 1.6. Let (X, d) be a metric space. Then the following are equivalent.

- 1. X is compact.
- 2. X is sequentially compact.
- 3. X is complete and totally bounded.

Proposition 1.7 (Lebesgue covering lemma). Let (X, d) be a compact metric space and $\{U_{\alpha}\}_{\alpha \in A}$ an open cover of X. Then there is a number $\delta > 0$ such that for any $A \subseteq X$ with $diam(A) < \delta$, the inclusion $A \subseteq U_{\alpha}$ holds for some α .

Such a number δ is called a **Lebesgue number** of the cover.

2 Uniform continuity

Definition 2.1. Let (X, d_X) and (Y, d_Y) be metric spaces. A map $f: X \to Y$ is **uniformly** continuous if for any $\epsilon > 0$, there is a $\delta > 0$ satisfying

$$d_X(x, x') < \delta \Rightarrow d_Y(f(x), f(x')) < \epsilon$$

Remark 2.2. In the definition of continuity, the $\delta = \delta(\epsilon, x)$ depends on ϵ and the point x, whereas uniform continuity means that the $\delta = \delta(\epsilon)$ does not depend on x.

In particular, a uniformly continuous map is always continuous, but not the other way around. For example, the map $f \colon \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is continuous but not uniformly continuous.

Proposition 2.3. Let X and Y be metric spaces, where X is compact, and $f: X \to Y$ is continuous. Then f is uniformly continuous.

Proof. Let $\epsilon > 0$ and consider the open cover $\{B_{\frac{\epsilon}{2}}(y)\}_{y \in Y}$ of Y. Taking preimages yields the open cover $\{f^{-1}B_{\frac{\epsilon}{2}}(y)\}_{y \in Y}$ of X. Since X is compact, this open cover has a Lebesgue number $\delta > 0$. The following implications hold:

$$d(x, x') < \delta \Rightarrow x, x' \in f^{-1}B_{\frac{\epsilon}{2}}(y) \text{ for some } y \in Y$$

$$\Rightarrow f(x), f(x') \in B_{\frac{\epsilon}{2}}(y)$$

$$\Rightarrow d(f(x), f(x')) \le d(f(x), y) + d(y, f(x')) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Definition 2.4. Let (X, d_X) and (Y, d_Y) be metric spaces. A map $f: X \to Y$ is **Lipschitz** continuous if there is a constant $K \ge 0$ satisfying

$$d_Y(f(x), f(x')) \le K d_X(x, x')$$

for all $x, x' \in X$

In other words, f distorts distances at most by a factor of K. Such a constant K is called a **Lipschitz constant** for f.

Proposition 2.5. A differentiable function $f: (a, b) \to \mathbb{R}$ is Lipschitz continuous if and only if its derivative $f': (a, b) \to \mathbb{R}$ is bounded. In that case, any Lipschitz constant is an upper bound on the absolute value of the derivative |f'(x)|, and vice versa.

Proposition 2.6. Lipschitz continuity implies uniform continuity.

Proof. Take $\delta = \frac{\epsilon}{K}$.

Example 2.7. The converse does not hold. For example, consider the function $f: [0,1] \to \mathbb{R}$ defined by $f(x) = \sqrt{x}$. Then f is uniformly continuous, since it is continuous and its domain [0,1] is compact. However f is not Lipschitz continuous, since the derivative $f'(x) = \frac{1}{2\sqrt{x}}$ goes to infinity as x goes to 0.