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1 Compactness and completeness in metric spaces

Definition 1.1. A sequence (xn)n∈N in a metric space (X, d) is a Cauchy sequence if for any
ε > 0, there is an index N ∈ N satisfying

d(xm, xn) < ε

for all m,n ≥ N .

Equivalently: limn→∞ supk∈N d(xn, xn+k) = 0.

Definition 1.2. A metric space (X, d) is complete if every Cauchy sequence in X converges.

Example 1.3. The real line R is complete, whereas the interval (0, 1) is not complete.

Exercise 1.4. Let X be a complete metric space and C ⊆ X a closed subset. Show that C is
complete.

Slogan: “closed in complete is complete”.

Definition 1.5. A metric space (X, d) is totally bounded if for every ε > 0, X can be covered
by finitely many ε-balls.

Theorem 1.6. Let (X, d) be a metric space. Then the following are equivalent.

1. X is compact.

2. X is sequentially compact.

3. X is complete and totally bounded.

Proposition 1.7 (Lebesgue covering lemma). Let (X, d) be a compact metric space and {Uα}α∈A
an open cover of X. Then there is a number δ > 0 such that for any A ⊆ X with diam(A) < δ,
the inclusion A ⊆ Uα holds for some α.

Such a number δ is called a Lebesgue number of the cover.
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2 Uniform continuity

Definition 2.1. Let (X, dX) and (Y, dY ) be metric spaces. A map f : X → Y is uniformly
continuous if for any ε > 0, there is a δ > 0 satisfying

dX(x, x′) < δ ⇒ dY (f(x), f(x′)) < ε.

Remark 2.2. In the definition of continuity, the δ = δ(ε, x) depends on ε and the point x,
whereas uniform continuity means that the δ = δ(ε) does not depend on x.

In particular, a uniformly continuous map is always continuous, but not the other way around.
For example, the map f : R → R defined by f(x) = x2 is continuous but not uniformly conti-
nuous.

Proposition 2.3. Let X and Y be metric spaces, where X is compact, and f : X → Y is
continuous. Then f is uniformly continuous.

Proof. Let ε > 0 and consider the open cover {B ε
2
(y)}y∈Y of Y . Taking preimages yields the

open cover {f−1B ε
2
(y)}y∈Y of X. Since X is compact, this open cover has a Lebesgue number

δ > 0. The following implications hold:

d(x, x′) < δ ⇒ x, x′ ∈ f−1B ε
2
(y) for some y ∈ Y

⇒ f(x), f(x′) ∈ B ε
2
(y)

⇒ d(f(x), f(x′)) ≤ d(f(x), y) + d(y, f(x′)) <
ε

2
+
ε

2
= ε.

Definition 2.4. Let (X, dX) and (Y, dY ) be metric spaces. A map f : X → Y is Lipschitz
continuous if there is a constant K ≥ 0 satisfying

dY (f(x), f(x′)) ≤ KdX(x, x′)

for all x, x′ ∈ X

In other words, f distorts distances at most by a factor of K. Such a constant K is called a
Lipschitz constant for f .

Proposition 2.5. A differentiable function f : (a, b)→ R is Lipschitz continuous if and only if
its derivative f ′ : (a, b)→ R is bounded. In that case, any Lipschitz constant is an upper bound
on the absolute value of the derivative |f ′(x)|, and vice versa.

Proposition 2.6. Lipschitz continuity implies uniform continuity.

Proof. Take δ = ε
K

.

Example 2.7. The converse does not hold. For example, consider the function f : [0, 1] → R
defined by f(x) =

√
x. Then f is uniformly continuous, since it is continuous and its domain

[0, 1] is compact. However f is not Lipschitz continuous, since the derivative f ′(x) = 1
2
√
x

goes
to infinity as x goes to 0.
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