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1 Compactness

1.1 Definitions

Definition 1.1. Let X be a topological space.

• A cover of X is a collection {Uα}α∈A of subsets Uα ⊆ X satisfying X =
⋃
α∈A Uα.

• An open cover of X is a cover {Uα}α∈A where each Uα is open in X.

• A subcover of {Uα}α∈A is a subcollection {Uβ}β∈B (for some B ⊆ A) which is still a
cover, i.e. X =

⋃
β∈B Uβ.

Definition 1.2. A topological space X is compact if for every open cover {Uα}α∈A of X, there
is a finite subcover {Uα1 , . . . , Uαn}, i.e. X = Uα1 ∪ . . . ∪ Uαn .

1.2 Facts about compactness

Proposition 1.3. Let X be a topological space and Y ⊆ X a subspace. Then Y is compact if
and only if for every collection {Uα}α∈A of open subsets Uα ⊆ X satisfying Y ⊆

⋃
α∈A Uα, there

is a finite subcollection {Uα1 , . . . , Uαn} satisfying Y ⊆ Uα1 ∪ . . . ∪ Uαn.

Proposition 1.4. Let K1, . . . , Kn be compact subspaces of X. Then their union K1 ∪ . . .∪Kn

is compact.

Slogan: “Finite union of compact is compact”.

Proposition 1.5. Let f : X → Y be a continuous map between topological spaces, and assume
X is compact. Then f(X) is compact.

Slogan: “Continuous image of compact is compact”.

Remark 1.6. In particular, a quotient of a compact space is always compact.

Proposition 1.7. Let X be a compact topological space and C ⊆ X a closed subspace. Then
C is compact.

Slogan: “closed in compact is compact”.
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Proposition 1.8. Let X be a Hausdorff topological space and K ⊆ X a compact subspace.
Then K is closed in X.

Slogan: “compact inside Hausdorff is closed”.

Example 1.9. Let X be an anti-discrete space. Then every subspace Y ⊂ X is compact, though
most of them are not closed in X (only the empty set ∅ and X itself are closed in X).

Proposition 1.10. Let f : X → Y be a continuous map between topological spaces, where X
is compact and Y a Hausdorff. Then f is a closed map.

In particular, if f is a continuous bijection, then f is a homeomorphism.

1.3 An important example

A basic example of compact space, yet one of the most important, is provided by the following
classic theorem.

Theorem 1.11 (Bolzano-Weierstrass). The interval [0, 1] is compact.

Proof. Suppose [0, 1] is not compact, i.e. there exists an open cover {Uα}α∈A which does not
admit a finite subcover. Then either [0, 1

2
] or [1

2
, 1] (or both) cannot be covered by a finite

subcover. Call this new interval [a1, b1], where we write [a0, b0] := [0, 1].

Repeating the argument, for every n ≥ 0, we obtain an interval [an, bn] which cannot be covered
by a finite subcover, and each interval has length bn − an = 1

2n
. Moreover, the intervals are

nested (decreasing):
[a0, b0] ⊃ [a1, b1] ⊃ [a2, b2] ⊃ . . .

The sequences {an}n∈N and {bn}n∈N are monotone and bounded, therefore they converge, say
an → a and bn → b. We have

lim
n→∞

(bn − an) = lim
n→∞

bn − lim
n→∞

an

lim
n→∞

1

2n
= b− a = 0

so that a = b. This point a ∈ [0, 1] is in some Uα0 , which is open, so we can find some small
radius ε > 0 such that the open ball (a − ε, a + ε) ⊆ Uα0 . (To be nitpicky, we should instead
write (a− ε, a+ ε) ∩ [0, 1], which is an open ball in [0, 1].)

By the convergence an → a and bn → a, for n large enough we have [an, bn] ⊂ (a−ε, a+ε) ⊆ Uα0 .
These intervals [an, bn] can thus be covered by a finite subcover, namely the collection {Uα0}
consisting of only one member. This contradicts the construction of [an, bn].

Remark 1.12. Any closed interval [a, b] ⊂ R is homeomorphic to [0, 1] and thus also compact.

Example 1.13. Consider the continuous map

f : [0, 2π]→ S1

t 7→ (cos t, sin t)

which induces a continuous map on the quotient

f : [0, 2π]/∼→ S1

where the equivalence relation ∼ identifies the endpoints of the interval, i.e. is generated by
0 ∼ 2π. Then f is a continuous bijection, the domain [0, 2π]/∼ is compact, and S1 is Hausdorff,
therefore f is a homeomorphism.
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