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1 Compactness

1.1 Definitions

Definition 1.1. Let X be a topological space.

e A cover of X is a collection {U,}aea of subsets U, C X satisfying X = (J, 4 Ua-
e An open cover of X is a cover {U,}nca where each U, is open in X.

o A subcover of {U,}qea is a subcollection {Us}gep (for some B C A) which is still a
cover, i.e. X =zcp Us.

Definition 1.2. A topological space X is compact if for every open cover {U,} e of X, there
is a finite subcover {Uy,, ..., Uy, }, 16 X =Uy U...UU,,.

1.2 Facts about compactness

Proposition 1.3. Let X be a topological space and Y C X a subspace. Then'Y is compact if
and only if for every collection {Ua}aca of open subsets U, C X satisfying Y C |J,cq Ua, there
is a finite subcollection {Uy,, ..., Uy, } satisfyingY CU,, U...UU,,.

Proposition 1.4. Let K1, ..., K, be compact subspaces of X. Then their union K;U...UK,
18 compact.

Slogan: “Finite union of compact is compact”.

Proposition 1.5. Let f: X — Y be a continuous map between topological spaces, and assume
X is compact. Then f(X) is compact.

Slogan: “Continuous image of compact is compact”.
Remark 1.6. In particular, a quotient of a compact space is always compact.

Proposition 1.7. Let X be a compact topological space and C C X a closed subspace. Then
C' is compact.

Slogan: “closed in compact is compact”.



Proposition 1.8. Let X be a Hausdorff topological space and K C X a compact subspace.
Then K is closed in X.

Slogan: “compact inside Hausdorff is closed”.

Ezxample 1.9. Let X be an anti-discrete space. Then every subspace Y C X is compact, though
most of them are not closed in X (only the empty set () and X itself are closed in X).

Proposition 1.10. Let f: X — Y be a continuous map between topological spaces, where X
1s compact and 'Y a Hausdorff. Then f is a closed map.

In particular, if f is a continuous bijection, then f is a homeomorphism.

1.3 An important example

A basic example of compact space, yet one of the most important, is provided by the following
classic theorem.

Theorem 1.11 (Bolzano-Weierstrass). The interval [0,1] is compact.

Proof. Suppose [0, 1] is not compact, i.e. there exists an open cover {U,}oca which does not
admit a finite subcover. Then either [0,1] or [3,1] (or both) cannot be covered by a finite
subcover. Call this new interval [ay, b;], where we write [ag, b] := [0, 1].
Repeating the argument, for every n > 0, we obtain an interval [a,, b,] which cannot be covered
by a finite subcover, and each interval has length b, — a,, = 2% Moreover, the intervals are
nested (decreasing):

[ao,bo] D [al,bl] D) [az,bg] D,
The sequences {a, }neny and {b, }nen are monotone and bounded, therefore they converge, say
a, — a and b, — b. We have

lim (b, — a,) = lim b, — lim a,
n—oo n—oo n—oo

so that @ = b. This point a € [0, 1] is in some U,,, which is open, so we can find some small
radius € > 0 such that the open ball (a — €,a + €) C U,,. (To be nitpicky, we should instead
write (a — €, a + €) N[0, 1], which is an open ball in [0, 1].)

By the convergence a,, — a and b,, — a, for n large enough we have [a,,, b,| C (a—¢,a+€) C U,,.
These intervals [a,, b,] can thus be covered by a finite subcover, namely the collection {U,, }
consisting of only one member. This contradicts the construction of [a,, b,]. O

Remark 1.12. Any closed interval [a,b] C R is homeomorphic to [0, 1] and thus also compact.

Example 1.13. Consider the continuous map
f:[0,27] — S*
t +— (cost,sint)
which induces a continuous map on the quotient
f:0,2n]/~— S*

where the equivalence relation ~ identifies the endpoints of the interval, i.e. is generated by
0 ~ 27. Then f is a continuous bijection, the domain [0, 27] /~ is compact, and S! is Hausdorff,
therefore f is a homeomorphism.



