Math 535 - General Topology Additional notes

Martin Frankland

September 10, 2012

1 Quotient spaces

Definition 1.1. Let X be a topological space and ~ an equivalence relation on X, along with the canonical projection $\pi: X \to X/\sim$. The **quotient topology** on X/\sim is the largest topology making π continuous.

Explicitly, a subset $U \subseteq X/\sim$ is open if and only if its preimage $\pi^{-1}(U) \subseteq X$ is open in X.

Proposition 1.2. With the quotient topology on X/\sim , a map $g: X/\sim \to Z$ is continuous if and only if the composite $g \circ \pi: X \to Z$ is continuous.

Proof. Homework 2 Problem 5.

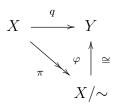
Proposition 1.3. The space X/\sim endowed with the quotient topology satisfies the universal property of a quotient. More precisely, the projection $\pi: X \twoheadrightarrow X/\sim$ is continuous, and for any continuous map $f: X \to Z$ which is constant on equivalence classes, there is a unique continuous map $\overline{f}: X/\sim Z$ such that $f = \overline{f} \circ \pi$, i.e. making the diagram

Proof. By the universal property of the projection map in sets, there is a unique function $\overline{f}: X/\sim \to Z$ such that $f = \overline{f} \circ \pi$. It remains to check that \overline{f} is continuous. By proposition 1.2, the fact that $\overline{f} \circ \pi$ is continuous guarantees that \overline{f} is continuous. \Box

Definition 1.4. Let X and Y be topological spaces. A map $q: X \to Y$ is called a **quotient** map or identification map if it is, up to homeomorphism, of the form $\pi: X \to X/\sim$ where X/\sim is endowed with the quotient topology. More precisely, q is a quotient map if there exists

 $\begin{array}{cccc} X & \stackrel{f}{\longrightarrow} & Z \\ \pi & & \swarrow & & \swarrow \\ \pi & & & \swarrow & & \\ X/\sim & & & \exists : \overline{f} \end{array}$

an equivalence relation \sim on X and a homeomorphism $\varphi \colon X/\sim \xrightarrow{\cong} Y$ making the diagram



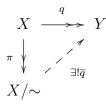
commute.

Note that the definition implies that q must be continuous and surjective, and that the equivalence relation \sim on X must be the one induced by q, namely $x \sim x'$ if and only if q(x) = q(x').

How to recognize quotient maps? In sets, a quotient map is the same as a surjection. However, in topological spaces, being continuous and surjective is not enough to be a quotient map. The crucial property of a quotient map is that open sets $U \subseteq X/\sim$ can be "detected" by looking at their preimage $\pi^{-1}(U) \subseteq X$.

Proposition 1.5. Let $q: X \twoheadrightarrow Y$ be a surjective continuous map satisfying that $U \subseteq Y$ is open if and only if its preimage $q^{-1}(U) \subseteq X$ is open. Then q is a quotient map.

Proof. Let \sim be the equivalence relation on X induced by q, i.e. $x \sim x'$ if and only if q(x) = q(x'). By definition, $q: X \to Y$ is constant on equivalence classes. By the universal property of the quotient space X/\sim , there is a unique continuous map $\overline{q}: X/\sim \to Y$ such that $\overline{q} \circ \pi = q$, i.e. making the diagram



commute. By construction, \overline{q} is now bijective. To prove that it is a homeomorphism, it remains to show that it is an open map.

Let $U \subseteq X/\sim$ be open. We want to show that $\overline{q}(U) \subseteq Y$ is open. By assumption, q has the property of "detecting" open subsets of Y, i.e. it suffices to check that the preimage $q^{-1}(\overline{q}(U)) \subseteq X$ is open. This preimage is

$$q^{-1}(\overline{q}(U)) = (\overline{q} \circ \pi)^{-1}(\overline{q}(U))$$
$$= \pi^{-1}\overline{q}^{-1}(\overline{q}(U))$$
$$= \pi^{-1}(U) \text{ since } \overline{q} \text{ is injective}$$

which is open in X since $\pi: X \twoheadrightarrow X/\sim$ is continuous.