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1 Infinite products

Definition 1.1. Let {Xα}α∈A be a family of topological spaces. The product topology
Tprod on the Cartesian product

∏
αXα is the smallest topology making all projection maps

pβ :
∏

αXα → Xβ continuous.

In other words, the product topology is generated by subsets of the form p−1β (Uβ) for Uβ ⊆ Xβ

open.

A basis for Tprod is the collection of “large boxes”

{
∏
α

Uα | Uα ⊆ Xα is open, and Uα = Xα except for at most finitely many α}

Proposition 1.2. The topological space (
∏

αXα, Tprod) along with the projections pβ :
∏

αXα →
Xβ satisfies the universal property of a product.

Proof. Let Z be a topological space along with continuous maps fα : Z → Xα for all α ∈ A.
In particular, these continuous maps are functions, so that there is a unique function f : Z →∏

αXα whose components are pα ◦ f = fα. In other words, f is given by

f(z) = (fα(z))α∈A .

It remains to check that f is continuous. The product topology is generated by subsets of the
form p−1β (Uβ) for Uβ ⊆ Xβ open. Its preimage under f is

f−1
(
p−1β (Uβ)

)
= (pβ ◦ f)−1(Uβ)

= f−1β (Uβ)

which is open in Z since fβ : Z → Xβ is continuous.

Definition 1.3. The box topology Tbox on the Cartesian product
∏

αXα is the topology for
which the collection of “boxes”

{
∏
α

Uα | Uα ⊆ Xα is open}

is a basis.
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Note that we always have Tprod ≤ Tbox, and equality holds for finite products. For an infinite
product, the inequality is usually strict.

Exercise 1.4. Show that the projection maps pβ :
∏

αXα → Xβ are open maps in the box
topology (and therefore also in the product topology).

2 Disjoint unions

In this section, we describe a construction which is dual to the product. The discussion will be
eerily similar to that of products, because the ideas are the same, and because of copy-paste.

2.1 Disjoint union of sets

Let X and Y be sets. The disjoint union of X and Y is the set

X q Y = {w | w ∈ X or x ∈ Y }.

It comes equipped with the inclusion maps iX : X → X q Y and iY : Y → X q Y from
each summand. This explicit description of X q Y is made more meaningful by the following
proposition.

Proposition 2.1. The disjoint union of sets XqY , along with inclusion maps iX and iY , is the
coproduct of sets, i.e. it satisfies the following universal property. For any set Z along with
maps fX : X → Z and fY : Y → Z, there is a unique map f : X q Y → Z whose restrictions
are f ◦ iX = fX and f ◦ iY = fY , in other words making the diagram

X

fX

++

iX ##

Y

fY

tt

iY{{

X q Y

∃!f
��

Z

commute.

Proof. Given fX and fY , define f : X q Y → Z by

f(w) :=

{
fX(w) if w ∈ X
fY (w) if w ∈ Y

which clearly satisfies f ◦ iX = fX and f ◦ iY = fY .

To prove uniqueness, note that any element w ∈ X q Y is in one of the summands:

w =

{
iX(w) if w ∈ X
iY (w) if w ∈ Y.
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Therefore, any function g : X q Y → Z can be written as

g(w) =

{
g(iX(w)) = (g ◦ iX)(w) if w ∈ X
g(iY (w)) = (g ◦ iY )(w) if w ∈ Y

so that g is determined by its restrictions g ◦ iX and g ◦ iY .

In slogans: “A map out of X q Y is the same data as a map out of X and a map out of Y ”.

Yet another slogan: “X q Y is the closest set equipped with a map from X and a map from
Y .”

As usual with universal properties, this characterizes X q Y up to unique isomorphism.

2.2 Coproduct topology

The next goal is to define the coproduct X q Y of topological spaces X and Y such that it
satisfies the analogous universal property in the category of topological spaces.

In other words, we want to find a topology onXqY such that the inclusion maps iX : X → XqY
and iY : Y → X q Y are continuous, and such that for any topological space Z along with
continuous maps fX : X → Z and fY : Y → Z, there is a unique continuous map f : XqY → Z
whose restrictions are f ◦ iX = fX and f ◦ iY = fY .

Definition 2.2. Let X and Y be topological spaces. The coproduct topology is the largest
topology on X q Y making the inclusions iX : X → X q Y and iY : Y → X q Y continuous.

This means that a subset U ⊆ X q Y is open if and only if i−1X (U) is open in X and i−1Y (U) is
open in Y .

More concretely, noting i−1X (U) = U ∩ X and i−1Y (U) = U ∩ Y , open sets can be described as
U = UX q UY where UX = U ∩X is open in X and UY = U ∩ Y is open in Y .

This definition works for an infinite disjoint union as well.

Definition 2.3. Let {Xα}α∈A be a family of topological spaces. The coproduct topology
Tcoprod on the disjoint union

∐
αXα is the largest topology making all inclusion maps iβ : Xβ →∐

αXα continuous.

This means that a subset U ⊆
∐

αXα is open if and only if i−1α (U) is open in Xα for all α ∈ A.

More concretely, noting i−1α (U) = U ∩ Xα, open sets can be described as U =
∐

α Uα where
Uα = U ∩ Xα is open in Xα. That is, open subsets are disjoint unions of open subsets from
each of the summands.

Proposition 2.4. Each summand Xβ ⊆
∐

αXα is open in the coproduct topology.

Proof. Write Xβ =
∐

α Uα where

Uα =

{
Xβ if α = β

∅ if α 6= β

is open in Xα for all α.
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Remark 2.5. More generally, the same proof shows that each inclusion map iβ : Xβ →
∐

αXα

is an open map.

Proposition 2.6. The topological space (
∐

αXα, Tcoprod) along with the inclusions iβ : Xβ →∐
αXα is a coproduct of topological spaces.

Proof. We verify the universal property of a coproduct.

Let Z be a topological space along with continuous maps fα : Xα → Z for all α ∈ A. In
particular, these continuous maps are functions, so that there is a unique function f :

∐
αXα →

Z whose restrictions are f ◦ iα = fα. In other words, f is given by

f(w) = f(iα(w)) = fα(w)

where α is the unique index for which w ∈ Xα.

It remains to check that f is continuous. Let U ⊆ Z be open and consider its preimage
f−1(U) ⊆

∐
αXα. To show that this subset is open, it suffices to check that its restriction to

each summand is open:

i−1α
(
f−1(U)

)
= (f ◦ iα)−1(U)

= f−1α (U)

is indeed open in Xα since fα : Xα → Z is continuous.

Upshot: A map f :
∐

αXα → Z is continuous if and only if its restriction f ◦ iα : Xα → Z to
each summand is continuous.
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