Math 535 - General Topology Additional notes

Martin Frankland

September 7, 2012

1 Infinite products

Definition 1.1. Let $\{X_{\alpha}\}_{\alpha \in A}$ be a family of topological spaces. The **product topology** $\mathcal{T}_{\text{prod}}$ on the Cartesian product $\prod_{\alpha} X_{\alpha}$ is the smallest topology making all projection maps $p_{\beta} \colon \prod_{\alpha} X_{\alpha} \to X_{\beta}$ continuous.

In other words, the product topology is generated by subsets of the form $p_{\beta}^{-1}(U_{\beta})$ for $U_{\beta} \subseteq X_{\beta}$ open.

A basis for \mathcal{T}_{prod} is the collection of "large boxes"

$$\{\prod_{\alpha} U_{\alpha} \mid U_{\alpha} \subseteq X_{\alpha} \text{ is open, and } U_{\alpha} = X_{\alpha} \text{ except for at most finitely many } \alpha\}$$

Proposition 1.2. The topological space $(\prod_{\alpha} X_{\alpha}, \mathcal{T}_{prod})$ along with the projections $p_{\beta} \colon \prod_{\alpha} X_{\alpha} \to X_{\beta}$ satisfies the universal property of a product.

Proof. Let Z be a topological space along with continuous maps $f_{\alpha}: Z \to X_{\alpha}$ for all $\alpha \in A$. In particular, these continuous maps are functions, so that there is a unique function $f: Z \to \prod_{\alpha} X_{\alpha}$ whose components are $p_{\alpha} \circ f = f_{\alpha}$. In other words, f is given by

$$f(z) = \left(f_{\alpha}(z)\right)_{\alpha \in A}.$$

It remains to check that f is continuous. The product topology is generated by subsets of the form $p_{\beta}^{-1}(U_{\beta})$ for $U_{\beta} \subseteq X_{\beta}$ open. Its preimage under f is

$$f^{-1}(p_{\beta}^{-1}(U_{\beta})) = (p_{\beta} \circ f)^{-1}(U_{\beta})$$
$$= f_{\beta}^{-1}(U_{\beta})$$

which is open in Z since $f_{\beta} \colon Z \to X_{\beta}$ is continuous.

Definition 1.3. The **box topology** \mathcal{T}_{box} on the Cartesian product $\prod_{\alpha} X_{\alpha}$ is the topology for which the collection of "boxes"

$$\left\{\prod_{\alpha} U_{\alpha} \mid U_{\alpha} \subseteq X_{\alpha} \text{ is open}\right\}$$

is a basis.

Note that we always have $\mathcal{T}_{\text{prod}} \leq \mathcal{T}_{\text{box}}$, and equality holds for finite products. For an infinite product, the inequality is usually strict.

Exercise 1.4. Show that the projection maps $p_{\beta} \colon \prod_{\alpha} X_{\alpha} \to X_{\beta}$ are open maps in the box topology (and therefore also in the product topology).

2 Disjoint unions

In this section, we describe a construction which is dual to the product. The discussion will be eerily similar to that of products, because the ideas are the same, and because of copy-paste.

2.1 Disjoint union of sets

Let X and Y be sets. The disjoint union of X and Y is the set

$$X \amalg Y = \{ w \mid w \in X \text{ or } x \in Y \}.$$

It comes equipped with the inclusion maps $i_X \colon X \to X \amalg Y$ and $i_Y \colon Y \to X \amalg Y$ from each summand. This explicit description of $X \amalg Y$ is made more meaningful by the following proposition.

Proposition 2.1. The disjoint union of sets $X \amalg Y$, along with inclusion maps i_X and i_Y , is the **coproduct** of sets, i.e. it satisfies the following universal property. For any set Z along with maps $f_X \colon X \to Z$ and $f_Y \colon Y \to Z$, there is a unique map $f \colon X \amalg Y \to Z$ whose restrictions are $f \circ i_X = f_X$ and $f \circ i_Y = f_Y$, in other words making the diagram

commute.

Proof. Given f_X and f_Y , define $f: X \amalg Y \to Z$ by

$$f(w) := \begin{cases} f_X(w) & \text{if } w \in X \\ f_Y(w) & \text{if } w \in Y \end{cases}$$

which clearly satisfies $f \circ i_X = f_X$ and $f \circ i_Y = f_Y$.

To prove uniqueness, note that any element $w \in X \amalg Y$ is in one of the summands:

$$w = \begin{cases} i_X(w) & \text{if } w \in X\\ i_Y(w) & \text{if } w \in Y. \end{cases}$$

Therefore, any function $g \colon X \amalg Y \to Z$ can be written as

$$g(w) = \begin{cases} g(i_X(w)) = (g \circ i_X)(w) & \text{if } w \in X \\ g(i_Y(w)) = (g \circ i_Y)(w) & \text{if } w \in Y \end{cases}$$

so that g is determined by its restrictions $g \circ i_X$ and $g \circ i_Y$.

In slogans: "A map out of $X \amalg Y$ is the same data as a map out of X and a map out of Y".

Yet another slogan: "X II Y is the closest set equipped with a map from X and a map from Y."

As usual with universal properties, this characterizes $X \amalg Y$ up to unique isomorphism.

2.2 Coproduct topology

The next goal is to define the coproduct $X \amalg Y$ of topological spaces X and Y such that it satisfies the analogous universal property in the category of topological spaces.

In other words, we want to find a topology on XIIY such that the inclusion maps $i_X \colon X \to X \amalg Y$ and $i_Y \colon Y \to X \amalg Y$ are *continuous*, and such that for any topological space Z along with *continuous* maps $f_X \colon X \to Z$ and $f_Y \colon Y \to Z$, there is a unique *continuous* map $f \colon X \amalg Y \to Z$ whose restrictions are $f \circ i_X = f_X$ and $f \circ i_Y = f_Y$.

Definition 2.2. Let X and Y be topological spaces. The **coproduct topology** is the largest topology on X II Y making the inclusions $i_X \colon X \to X \amalg Y$ and $i_Y \colon Y \to X \amalg Y$ continuous.

This means that a subset $U \subseteq X \amalg Y$ is open if and only if $i_X^{-1}(U)$ is open in X and $i_Y^{-1}(U)$ is open in Y.

More concretely, noting $i_X^{-1}(U) = U \cap X$ and $i_Y^{-1}(U) = U \cap Y$, open sets can be described as $U = U_X \coprod U_Y$ where $U_X = U \cap X$ is open in X and $U_Y = U \cap Y$ is open in Y.

This definition works for an infinite disjoint union as well.

Definition 2.3. Let $\{X_{\alpha}\}_{\alpha \in A}$ be a family of topological spaces. The **coproduct topology** \mathcal{T}_{coprod} on the disjoint union $\coprod_{\alpha} X_{\alpha}$ is the largest topology making all inclusion maps $i_{\beta} \colon X_{\beta} \to \coprod_{\alpha} X_{\alpha}$ continuous.

This means that a subset $U \subseteq \coprod_{\alpha} X_{\alpha}$ is open if and only if $i_{\alpha}^{-1}(U)$ is open in X_{α} for all $\alpha \in A$. More concretely, noting $i_{\alpha}^{-1}(U) = U \cap X_{\alpha}$, open sets can be described as $U = \coprod_{\alpha} U_{\alpha}$ where $U_{\alpha} = U \cap X_{\alpha}$ is open in X_{α} . That is, open subsets are disjoint unions of open subsets from each of the summands.

Proposition 2.4. Each summand $X_{\beta} \subseteq \prod_{\alpha} X_{\alpha}$ is open in the coproduct topology.

Proof. Write $X_{\beta} = \coprod_{\alpha} U_{\alpha}$ where

$$U_{\alpha} = \begin{cases} X_{\beta} & \text{if } \alpha = \beta \\ \emptyset & \text{if } \alpha \neq \beta \end{cases}$$

is open in X_{α} for all α .

Remark 2.5. More generally, the same proof shows that each inclusion map $i_{\beta} \colon X_{\beta} \to \coprod_{\alpha} X_{\alpha}$ is an open map.

Proposition 2.6. The topological space $(\coprod_{\alpha} X_{\alpha}, \mathcal{T}_{coprod})$ along with the inclusions $i_{\beta} \colon X_{\beta} \to \coprod_{\alpha} X_{\alpha}$ is a coproduct of topological spaces.

Proof. We verify the universal property of a coproduct.

Let Z be a topological space along with continuous maps $f_{\alpha} \colon X_{\alpha} \to Z$ for all $\alpha \in A$. In particular, these continuous maps are functions, so that there is a unique function $f \colon \coprod_{\alpha} X_{\alpha} \to Z$ whose restrictions are $f \circ i_{\alpha} = f_{\alpha}$. In other words, f is given by

$$f(w) = f(i_{\alpha}(w)) = f_{\alpha}(w)$$

where α is the unique index for which $w \in X_{\alpha}$.

It remains to check that f is continuous. Let $U \subseteq Z$ be open and consider its preimage $f^{-1}(U) \subseteq \coprod_{\alpha} X_{\alpha}$. To show that this subset is open, it suffices to check that its restriction to each summand is open:

$$i_{\alpha}^{-1} (f^{-1}(U)) = (f \circ i_{\alpha})^{-1}(U)$$
$$= f_{\alpha}^{-1}(U)$$

is indeed open in X_{α} since $f_{\alpha} \colon X_{\alpha} \to Z$ is continuous.

Upshot: A map $f: \coprod_{\alpha} X_{\alpha} \to Z$ is continuous if and only if its restriction $f \circ i_{\alpha}: X_{\alpha} \to Z$ to each summand is continuous.