Math 535 - General Topology Additional notes

Martin Frankland

September 5, 2012

1 Subspaces

Definition 1.1. Let X be a topological space and $A \subseteq X$ any subset. The subspace topology on A is the smallest topology $\mathcal{T}_{A}^{\text {sub }}$ making the inclusion map $i: A \hookrightarrow X$ continuous.

In other words, $\mathcal{T}_{A}^{\text {sub }}$ is generated by subsets $V \subseteq A$ of the form

$$
V=i^{-1}(U)=U \cap A
$$

for any open $U \subseteq X$.
Proposition 1.2. The subspace topology on A is

$$
\mathcal{T}_{A}^{\text {sub }}=\{V \subseteq A \mid V=U \cap A \text { for some open } U \subseteq X\}
$$

In other words, the collection of subsets of the form $U \cap A$ already forms a topology on A.

2 Products

Before discussing the product of spaces, let us review the notion of product of sets.

2.1 Product of sets

Let X and Y be sets. The Cartesian product of X and Y is the set of pairs

$$
X \times Y=\{(x, y) \mid x \in X, y \in Y\}
$$

It comes equipped with the two projection maps $p_{X}: X \times Y \rightarrow X$ and $p_{Y}: X \times Y \rightarrow Y$ onto each factor, defined by

$$
\begin{aligned}
& p_{X}(x, y)=x \\
& p_{Y}(x, y)=y .
\end{aligned}
$$

This explicit description of $X \times Y$ is made more meaningful by the following proposition.

Proposition 2.1. The Cartesian product of sets satisfies the following universal property. For any set Z along with maps $f_{X}: Z \rightarrow X$ and $f_{Y}: Z \rightarrow Y$, there is a unique map $f: Z \rightarrow X \times Y$ satisfying $p_{X} \circ f=f_{X}$ and $p_{Y} \circ f=f_{Y}$, in other words making the diagram

commute.

Proof. Given f_{X} and f_{Y}, define $f: Z \rightarrow X \times Y$ by

$$
f(z):=\left(f_{X}(z), f_{Y}(z)\right)
$$

which clearly satisfies $p_{X} \circ f=f_{X}$ and $p_{Y} \circ f=f_{Y}$.
To prove uniqueness, note that any pair $(x, y) \in X \times Y$ can be written as

$$
(x, y)=\left(p_{X}(x, y), p_{Y}(x, y)\right)
$$

i.e. the projections give us each individual component of the pair. Therefore, any function $g: Z \rightarrow X \times Y$ can be written as

$$
\begin{aligned}
g(z) & =\left(p_{X}(g(z)), p_{Y}(g(z))\right) \\
& =\left(\left(p_{X} \circ g\right)(z),\left(p_{Y} \circ g\right)(z)\right)
\end{aligned}
$$

so that g is determined by its components $p_{X} \circ g$ and $p_{Y} \circ g$.
In slogans: "A map into $X \times Y$ is the same data as a map into X and a map into Y ".
Yet another slogan: " $X \times Y$ is the closest set equipped with a map to X and a map to Y."
As usual with universal properties, this characterizes $X \times Y$ up to unique isomorphism. This statement is made precise in the following proposition.

Proposition 2.2. Let W be a set equipped with maps $\pi_{X}: W \rightarrow X$ and $\pi_{Y}: W \rightarrow Y$ satisfying the universal property of the product. Then there is a unique isomorphism $\varphi: W \xrightarrow{\cong} X \times Y$ commuting with the projections, i.e. making the diagrams

commute.

Proof. Starting from the data of the maps $\pi_{X}: W \rightarrow X$ and $\pi_{Y}: W \rightarrow Y$, the universal property of $X \times Y$ provides a unique map $\varphi: W \rightarrow X \times Y$ commuting with the projections.

Likewise, starting from the data of the maps $p_{X}: X \times Y \rightarrow X$ and $p_{Y}: X \times Y \rightarrow Y$, the universal property of W provides a unique map $\psi: X \times Y \rightarrow W$ commuting with the projections.
We claim that φ is an isomorphism, with inverse ψ.
The composite $\psi \circ \varphi: W \rightarrow W$ is a map into W commuting with the projections. But so is the identity map $\mathrm{id}_{W}: W \rightarrow W$. By uniqueness (guaranteed in the universal property of W), we obtain $\psi \circ \varphi=\mathrm{id}_{W}$.
Likewise, the composite $\varphi \circ \psi: X \times Y \rightarrow X \times Y$ is a map into $X \times Y$ commuting with the projections. But so is the identity map $\operatorname{id}_{X \times Y}: X \times Y \rightarrow X \times Y$. By uniqueness (guaranteed in the universal property of $X \times Y$), we obtain $\varphi \circ \psi=\operatorname{id}_{X \times Y}$.

2.2 Product topology

The next goal is to define the product $X \times Y$ of topological spaces X and Y such that it satisfies the analogous universal property in the category of topological spaces.

In other words, we want to find a topology on $X \times Y$ such that the projection maps $p_{X}: X \times Y \rightarrow$ X and $p_{Y}: X \times Y \rightarrow Y$ are continuous, and such that for any topological space Z along with continuous maps $f_{X}: Z \rightarrow X$ and $f_{Y}: Z \rightarrow Y$, there is a unique continuous map $f: Z \rightarrow X \times Y$ satisfying $p_{X} \circ f=f_{X}$ and $p_{Y} \circ f=f_{Y}$.

Definition 2.3. Let X and Y be topological spaces. The product topology $\mathcal{T}_{X \times Y}$ on $X \times Y$ is the smallest topology on $X \times Y$ making the projections $p_{X}: X \times Y \rightarrow X$ and $p_{Y}: X \times Y \rightarrow Y$ continuous.

In other words, $\mathcal{T}_{X \times Y}$ is generated by "strips" of the form

$$
\begin{aligned}
& p_{X}^{-1}(U)=U \times Y \\
& p_{Y}^{-1}(V)=X \times V
\end{aligned}
$$

for some open $U \subseteq X$ or some open $V \subseteq Y$.
Proposition 2.4. The collection of "rectangles"

$$
\{U \times V \mid U \subseteq X \text { is open and } V \subseteq Y \text { is open }\}
$$

is a basis for the product topology on $X \times Y$.
Proof. Finite intersections of strips

$$
(U \times Y) \cap(X \times V)=U \times V
$$

provide all rectangles. However a finite intersection of rectangles

$$
\left(U_{1} \times V_{1}\right) \cap\left(U_{2} \times V_{2}\right)=\left(U_{1} \cap U_{2}\right) \times\left(V_{1} \cap V_{2}\right)
$$

is again a rectangle, since $U_{1} \cap U_{2} \subseteq X$ is open and $V_{1} \cap V_{2} \subseteq Y$ is open.
Proposition 2.5. The topological space $\left(X \times Y, \mathcal{T}_{X \times Y}\right)$ along with the projections $p_{X}: X \times Y \rightarrow$ X and $p_{Y}: X \times Y \rightarrow Y$ satisfies the universal property of a product.

Proof. Let Z be a topological space along with continuous maps $f_{X}: Z \rightarrow X$ and $f_{Y}: Z \rightarrow Y$. In particular, these continuous maps are functions, so that there is a unique function $f: Z \rightarrow$ $X \times Y$ satisfying $p_{X} \circ f=f_{X}$ and $p_{Y} \circ f=f_{Y}$. In other words, f is given by

$$
f(z)=\left(f_{X}(z), f_{Y}(z)\right)
$$

It remains to check that f is continuous. For any rectangle $U \times V \subseteq X \times Y$ where $U \subseteq X$ is open and $V \subseteq Y$ is open, its preimage is

$$
\begin{aligned}
f^{-1}(U \times V) & =\{z \in Z \mid f(z) \in U \times V\} \\
& =\left\{z \in Z \mid f_{X}(z) \in U \text { and } f_{Y}(z) \in V\right\} \\
& =f_{X}^{-1}(U) \cap f_{Y}^{-1}(V) .
\end{aligned}
$$

Since f_{X} and f_{Y} are continuous, the subsets $f_{X}^{-1}(U)$ and $f_{Y}^{-1}(V)$ are open in Z, and so is their intersection $f_{X}^{-1}(U) \cap f_{Y}^{-1}(V)$. Since those rectangles $U \times V$ form a basis for the product topology on $X \times Y$, the function $f: Z \rightarrow X \times Y$ is continuous.

Remark 2.6. Why did we choose the smallest topology making the projections p_{X} and p_{Y} continuous?

If there is a product topology $\mathcal{T}_{X \times Y}$ satisfying the universal property, consider any other topology \mathcal{T} on $X \times Y$ making the projections p_{X} and p_{Y} continuous. Then the universal property of $\mathcal{T}_{X \times Y}$ provides a unique continuous map f making the diagram

commute. As a function, $f: X \times Y \rightarrow X \times Y$ must be the identity:

$$
\begin{aligned}
f(x, y) & =\left(p_{X}(x, y), p_{Y}(x, y)\right) \\
& =(x, y) .
\end{aligned}
$$

The identity id : $(X \times Y, \mathcal{T}) \rightarrow\left(X \times Y, \mathcal{T}_{X \times Y}\right)$ being continuous means precisely the inequality $\mathcal{T}_{X \times Y} \leq \mathcal{T}$. That is why $\mathcal{T}_{X \times Y}$ had to be the smallest topology making the projections continuous.
Exercise 2.7. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces.

1. For points (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ in $X \times Y$, define their distance as the sum

$$
d\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right):=d_{X}\left(x, x^{\prime}\right)+d_{Y}\left(y, y^{\prime}\right) .
$$

Show that d is a metric on $X \times Y$.
2. Show that the metric d induces the product topology on $X \times Y$.

