Math 535 - General Topology Additional notes

Martin Frankland

August 31, 2012

1 Homeomorphisms

Definition 1.1. A map $f: X \to Y$ between topological spaces is a **homeomorphism** if it is continuous, invertible (i.e. bijective), and its inverse $f^{-1}: Y \to X$ is also continuous.

2 Neighborhoods

Definition 2.1. Let X be a topological space. A **neighborhood** of a point $x \in X$ is a subset $N \subseteq X$ such that there is an open U satisfying $x \in U \subseteq N$.

3 Bases and subbases

Definition 3.1. Let (X, \mathcal{T}) be a topological space. A **basis** for the topology \mathcal{T} of X is a collection \mathcal{B} of subsets of X satisfying

$$\mathcal{T} = \left\{ \bigcup_{\alpha} B_{\alpha} \mid B_{\alpha} \in \mathcal{B} \right\}$$

i.e. open sets are precisely unions of members of \mathcal{B} .

Exercise 3.2. Let X be a set. Show that a collection \mathcal{B} of subsets of X is a basis for some topology on X if and only if \mathcal{B} satisfies the following conditions:

- 1. \mathcal{B} covers X, i.e. $\bigcup_{B \in \mathcal{B}} B = X$.
- 2. Finite intersections are unions: For any $B, B' \in \mathcal{B}$, we have $B \cap B' = \bigcup_{\alpha} B_{\alpha}$ for some family $\{B_{\alpha}\}$ of members of \mathcal{B} .

Definition 3.3. Let (X, \mathcal{T}) be a topological space. A subbasis for the topology \mathcal{T} of X is a collection \mathcal{S} of subsets of X satisfying

$$\mathcal{T} := \left\{ \bigcup_{\alpha} \bigcap_{i=1}^{n_{\alpha}} S_{\alpha,i} \mid S_{\alpha,i} \in \mathcal{S} \right\}$$

i.e. finite intersections of members of $\mathcal S$ form a basis for the topology.

4 Comparing topologies

For a given set X, topologies on X can be partially ordered by inclusion.

Definition 4.1. Let X be a set, and \mathcal{T}_1 and \mathcal{T}_2 two topologies on X. We say \mathcal{T}_1 is smaller than \mathcal{T}_2 , denoted $\mathcal{T}_1 \leq \mathcal{T}_2$, if the inclusion $\mathcal{T}_1 \subseteq \mathcal{T}_2$ holds, viewed as subsets of the power set $\mathcal{P}(X)$. In other words, every \mathcal{T}_1 -open is also \mathcal{T}_2 -open.

One can also say that \mathcal{T}_2 is **larger** than \mathcal{T}_1 .

Some references say that \mathcal{T}_1 is **coarser** than \mathcal{T}_2 , while \mathcal{T}_2 is **finer** than \mathcal{T}_1 .

Remark 4.2. The anti-discrete topology $\mathcal{T}_{anti} = \{\emptyset, X\}$ is the least element in that partial order, whereas the discrete topology $\mathcal{T}_{dis} = \mathcal{P}(X)$ is the greatest element. In other words, the inequalities

$$\mathcal{T}_{\rm anti} \leq \mathcal{T} \leq \mathcal{T}_{\rm dis}$$

hold for any topology \mathcal{T} on X.

Remark 4.3. By definition, the inequality $\mathcal{T}_1 \leq \mathcal{T}_2$ holds if and only if the identity function

$$\mathrm{id}\colon (X,\mathcal{T}_2)\to (X,\mathcal{T}_1)$$

is continuous. Note the reversal, mapping "from fine to coarse".

The poset of topologies on X has arbitrary meets (infima), described explicitly in the following proposition.

Proposition 4.4. Let $\{\mathcal{T}_{\beta}\}$ be a family of topologies on X. Then the intersection $\bigcap_{\beta} \mathcal{T}_{\beta}$ is a topology on X, and therefore the infimum of the family $\{\mathcal{T}_{\beta}\}$.

Proof. Exercise.

Remark 4.5. If we consider an empty family of topologies, then their intersection is

$$\bigcap_{\beta} \mathcal{T}_{\beta} = \mathcal{P}(X) = \mathcal{T}_{\mathrm{dis}}$$

which is a topology on X. Thus the proposition also holds in that case.

Definition 4.6. Let X be a set and S be a collection of subsets of X. The **topology generated** by S (if it exists) is the smallest topology \mathcal{T}_S containing S. In other words, it satisfies $S \subseteq \mathcal{T}_S$ and for any other topology \mathcal{T}' containing S, we have $\mathcal{T}_S \leq \mathcal{T}'$.

Note that this universal property makes $\mathcal{T}_{\mathcal{S}}$ unique, if it exists.

Proposition 4.7. For any collection of subsets S, the topology \mathcal{T}_S exists.

Proof. The topology

$$\mathcal{T}_{\mathcal{S}} = \bigcap_{\substack{\text{topologies } \mathcal{T} \\ \text{such that } \mathcal{S} \subseteq \mathcal{T}}} \mathcal{T}$$

has the required properties.

The following proposition provides an explicit description of $\mathcal{T}_{\mathcal{S}}$.

Proposition 4.8. The topology generated by \mathcal{S} is

$$\mathcal{T}_{\mathcal{S}} = \left\{ \bigcup_{\alpha} \bigcap_{i=1}^{n_{\alpha}} S_{\alpha,i} \mid S_{\alpha,i} \in \mathcal{S} \right\}$$

i.e. the topology for which \mathcal{S} is a subbasis.

Proof. Homework 1 Problem 10.