Math 527 - Homotopy Theory
 Spring 2013
 Homework 6, Lecture 2/18

Problem 1. (The Hopf fibration) Let $S^{3} \subset \mathbb{C}^{2} \cong \mathbb{R}^{4}$ be the unit sphere. Stereographic projection provides a homeomorphism $S^{2} \cong \mathbb{C} P^{1}$, where the "North pole" corresponds to $[0: 1] \in \mathbb{C} P^{1}$. The composite

$$
S^{3} \hookrightarrow \mathbb{C}^{2} \backslash\{0\} \rightarrow \mathbb{C} P^{1}
$$

where the second map is the natural quotient map, is called the Hopf map and is usually denoted by $\eta: S^{3} \rightarrow S^{2}$.
a. Show that $\eta: S^{3} \rightarrow S^{2}$ is a fiber bundle with fiber S^{1}.
b. Show that for all $n \geq 3$, the Hopf map induces an isomorphism $\eta_{*}: \pi_{n}\left(S^{3}\right) \xrightarrow{\simeq} \pi_{n}\left(S^{2}\right)$. Deduce in particular the isomorphism $\pi_{3}\left(S^{2}\right) \simeq \mathbb{Z}$, where the class $[\eta] \in \pi_{3}\left(S^{2}\right)$ is a generator.

