Math 527 - Homotopy Theory Spring 2013
 Homework 5, Lecture 2/15

Problem 4. (May § 9.4 Lemma) Let $n \geq 2$ and consider the n-dimensional real projective space $\mathbb{R} P^{n}$. Show that the following holds: $\pi_{1}\left(\mathbb{R} P^{n}\right) \simeq \mathbb{Z} / 2$ and $\pi_{k}\left(\mathbb{R} P^{n}\right) \simeq \pi_{k}\left(S^{n}\right)$ for all $k \geq 2$.

Problem 5. (May § 9.6 Problem 2) Let $n \geq 3$.
a. Compute the group $\pi_{n}\left(\mathbb{R} P^{n}, \mathbb{R} P^{n-1}\right)$.
b. Deduce that the quotient map of pairs

$$
\left(\mathbb{R} P^{n}, \mathbb{R} P^{n-1}\right) \rightarrow\left(\mathbb{R} P^{n} / \mathbb{R} P^{n-1}, *\right)
$$

does not induce an isomorphism on homotopy groups.
Remark. Feel free to use the facts $\pi_{n}\left(S^{n}\right) \simeq \mathbb{Z}$ and $\pi_{k}\left(S^{n}\right)=0$ for $k<n($ with $n, k \geq 1)$.

