Math 527 - Homotopy Theory Spring 2013 Homework 5, Lecture 2/15

Problem 4. (May § 9.4 Lemma) Let $n \geq 2$ and consider the *n*-dimensional real projective space $\mathbb{R}P^n$. Show that the following holds: $\pi_1(\mathbb{R}P^n) \simeq \mathbb{Z}/2$ and $\pi_k(\mathbb{R}P^n) \simeq \pi_k(S^n)$ for all $k \geq 2$.

Problem 5. (May § 9.6 Problem 2) Let $n \ge 3$.

- **a.** Compute the group $\pi_n(\mathbb{R}P^n, \mathbb{R}P^{n-1})$.
- **b.** Deduce that the quotient map of pairs

$$(\mathbb{R}P^n,\mathbb{R}P^{n-1})\to(\mathbb{R}P^n/\mathbb{R}P^{n-1},*)$$

does not induce an isomorphism on homotopy groups.

Remark. Feel free to use the facts $\pi_n(S^n) \simeq \mathbb{Z}$ and $\pi_k(S^n) = 0$ for k < n (with $n, k \ge 1$).