Math 527 - Homotopy Theory Spring 2013 Homework 3, Lecture 1/30

Problem 2. Let $f: X \to Y$ be a map of spaces, and $x \in X$ any basepoint. Show that the induced map

$$\pi_n f \colon \pi_n(X, x) \to \pi_n(Y, f(x))$$

for $n \ge 1$ is a map of π_1 -modules, in the sense that it is $\pi_1 f$ -equivariant. More precisely, for any $\gamma \in \pi_1(X, x)$ and $\theta \in \pi_n(X, x)$ the equation

$$(\pi_n f)(\gamma \cdot \theta) = (\pi_1 f)(\gamma) \cdot (\pi_n f)(\theta)$$

holds in $\pi_n(Y, f(x))$.