Math 527 - Homotopy Theory Spring 2013 Homework 1, Lecture 1/16

The fundamental group, revisited.

Problem 2. Let \mathcal{C} be a locally small category with finite products, including a terminal object. Let G be a group object in \mathcal{C} . Show that for any object X of \mathcal{C} , the hom-set $\text{Hom}_{\mathcal{C}}(X, G)$ is naturally a group.

In other words, the structure maps of G induce a group structure on $\operatorname{Hom}_{\mathcal{C}}(X,G)$, and this assignment

$$\operatorname{Hom}_{\mathcal{C}}(-,G)\colon \mathcal{C}^{\operatorname{op}}\to \mathbf{Gp}$$

is a functor.

Problem 3. Consider S^1 as the unit circle in \mathbb{R}^2 with basepoint (1,0), and consider the "pinch" map

$$p\colon S^1 \to S^1/S^0 \cong S^1 \lor S^1$$

which collapses the equator $S^0 \subset S^1$, i.e. identifies the points (1,0) and (-1,0).

a. Show that the pinch map is (pointed) homotopy coassociative. More precisely, the diagram

commutes up to pointed homotopy.

In fact, a very similar argument shows that S^1 is a homotopy cogroup object in \mathbf{Top}_* . (Do not show this.) Comultiplication is the pinch map $S^1 \to S^1 \vee S^1$, the counit is the constant map $S^1 \to *$, and the coinverse $S^1 \to S^1$ reverses the last component (viewed in \mathbb{R}^2).

b. Conclude that for any pointed space (X, x_0) , the set $\pi_1(X, x_0)$ is naturally a group.

More precisely, the structure maps of S^1 as homotopy cogroup object induce a group structure on $\pi_1(X, x_0)$, and moreover this assignment defines a (covariant) functor $\pi_1: \operatorname{Top}_* \to \operatorname{Gp}$.

Remark. This construction makes transparent the fact that π_1 is a homotopy functor, i.e. it factors through the quotient functor $\mathbf{Top}_* \to \mathrm{Ho}(\mathbf{Top}_*)$.