Math 527 - Homotopy Theory
 Spring 2013
 Homework 12, Lecture 4/10

Problem 2. Let (X, e) be a pointed space. The James construction on X is the pointed space obtained by taking words in the elements of X and declaring that e is a unit. Formally, it is the quotient space:

$$
J(X):=\coprod_{k \geq 1} X^{k} / \sim
$$

where \sim is the equivalence relation generated by identifications of the form:

$$
\left(x_{1}, \ldots, x_{i-1}, e, x_{i+1}, \ldots, x_{k}\right) \sim\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right)
$$

a. Show that $J(X)$ is a topological monoid (under concatenation of words).
b. Let M be a topological monoid and $f: X \rightarrow M$ a pointed map. Show that there is a unique continuous map of monoids $\widetilde{f}: J(X) \rightarrow M$ making the diagram

commute. Here $\iota_{1}: X \rightarrow J(X)$ denotes the canonical "inclusion of single-letter words", i.e. the composite

$$
X=X^{1} \hookrightarrow \coprod_{k \geq 1} X^{k} \rightarrow J(X)
$$

Upshot. This shows that $J(X)$ is in fact the free topological monoid on X. In other words, let U : TopMon $\rightarrow \mathbf{T o p}_{*}$ denote the forgetful functor from topological monoids to pointed spaces. Then the functor $J: \mathbf{T o p}_{*} \rightarrow$ TopMon is left adjoint to U, and $\iota_{1}: X \rightarrow J(X)$ is the unit map of the adjunction.

