Math 527 - Homotopy Theory Spring 2013
 Homework 11, Lecture 4/5

Problem 3. Let X be a CW complex, with n-skeleton X_{n}, and let Y be a path-connected simple space. Let $n \geq 2$, and let $f_{n}, g_{n}: X_{n} \rightarrow Y$ be two maps which agree on X_{n-1}, i.e.

$$
\left.f_{n}\right|_{X_{n-1}}=\left.g_{n}\right|_{X_{n-1}} .
$$

Let $d\left(f_{n}, g_{n}\right) \in C^{n}\left(X ; \pi_{n} Y\right)$ denote their difference cochain.
Show that $f_{n} \simeq g_{n}$ rel X_{n-2} holds if and only if $\left[d\left(f_{n}, g_{n}\right)\right]=0 \in H^{n}\left(X ; \pi_{n} Y\right)$ holds, i.e. $d\left(f_{n}, g_{n}\right)$ is a coboundary.

