Math 527 - Homotopy Theory Spring 2013 Homework 10, Lecture 3/29

Problem 3. Let $n \ge 0$ and let X be a space with the homotopy type of a CW complex. Consider the Postnikov truncation map $t_n: X \to P_n X$, which may be assumed a relative CW complex.

Let $f: X \to Z$ be any map, where Z is an Eilenberg-MacLane space of type (G, k) for some abelian group G and $k \leq n$.

Show that there exists a map $g: P_n X \to Z$ satisfying $f \simeq g \circ t_n$, and this map g is **unique up** to homotopy. Here, g makes the diagram

commute up to homotopy.

Remark. The statement still holds when Z is a product of such Eilenberg-MacLane spaces. However, if Z is more complicated, but still *n*-truncated (i.e. $\pi_i(Z) = 0$ for i > n), then such a factorization $g: P_n X \to Z$ still exists, but its homotopy class **need not** be unique.