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In our discussion of obstruction theory via the skeletal filtration, we left several claims as
exercises. The goal of these notes is to fill in two of those gaps.

1 Setup

Let us recall the setup, adopting a notation similar to that of May § 18.5.

Let (X,A) be a relative CW complex with n-skeleton Xn, and let Y be a simple space. Given
two maps fn, gn : Xn → Y which agree on Xn−1, we defined a difference cochain

d(fn, gn) ∈ Cn (X,A; πn(Y ))

whose value on each n-cell was defined using the following “double cone construction”.

Definition 1.1. Let H,H ′ : Dn → Y be two maps that agree on the boundary ∂Dn ∼= Sn−1.
The difference construction of H and H ′ is the map

H ∪H ′ : Sn ∼= Dn ∪Sn−1 Dn → Y.

Here, the two terms Dn are viewed as the upper and lower hemispheres of Sn respectively.

1



2 The two claims

In this section, we state two claims and reduce their proof to the case of spheres and discs.

Proposition 2.1. Given two maps fn, gn : Xn → Y which agree on Xn−1, we have

fn ' gn rel Xn−1

if and only if d(fn, gn) = 0 holds.

Proof. For each n-cell enα of X \ A, consider its attaching map ϕα : Sn−1 → Xn−1 and charac-
teristic map Φα : (Dn, Sn−1)→ (Xn, Xn−1).

Because fn and gn agree on Xn−1, the condition fn ' gn rel Xn−1 is equivalent to the corre-
sponding condition on every n-cell:

fn ◦ Φα ' gn ◦ Φα rel Sn−1.

By 3.3, this condition is equivalent to the condition

(fn ◦ Φα) ∪ (gn ◦ Φα) = 0 ∈ πn(Y )

for every n-cell, i.e. the vanishing of the difference cochain d(fn, gn) = 0 ∈ Cn (X,A; πn(Y )).

Proposition 2.2. Given a map fn : Xn → Y and a cellular cochain d ∈ Cn (X,A; πn(Y )),
there exists a map gn : Xn → Y which agrees with fn on Xn−1:

fn|Xn−1 = gn|Xn−1

and such that the difference cochain satisfies d(fn, gn) = d.

Proof. For each n-cell enα of X \ A, consider its attaching map ϕα : Sn−1 → Xn−1 and char-
acteristic map Φα : (Dn, Sn−1) → (Xn, Xn−1). To produce the desired map gn : Xn → Y , it
suffices to define it on each n-cell of X \A. The condition to be satisfied is that the difference
construction

(fn ◦ Φα) ∪ (gn ◦ Φα) : Dn ∪Sn−1 Dn → Y

be a representative of the class d(enα) ∈ πn(Y ).

This is always possible, by 3.4.
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3 The case of spheres and discs

The two propositions in the previous section boil down to properties of the difference construc-
tion, which we study in more detail.

Given maps H,H ′ : Dn → Y which agree on ∂Dn ∼= Sn−1, it will be useful to think of H and
H ′ as two null-homotopies of the same map

f := H|Sn−1 = H ′|Sn−1 : Sn−1 → Y.

In that context, we view the disc as the cone on the sphere:

Dn ∼= CSn−1 = Sn−1 × I/
(
Sn−1 × {1}

)
.

(Technically, we should take the reduced cone, but that’s alright.)

Recall that for any pointed space X, the (reduced) suspension ΣX homotopy coacts on the
(reduced) cone CX, via the map

c : CX → CX ∨ ΣX

which pinches the “middle” of the cone. Note moreover that this coaction map is compatible
with the inclusions of X at the bottom of the cone:

CX
c
// CX ∨ ΣX

X

ι0

OO

ι0

99

In particular, taking X = Sn−1, the sphere Sn ∼= ΣSn−1 homotopy coacts on the disc Dn ∼=
CSn−1 via the coaction map

c : Dn → Dn ∨ Sn.

Notation 3.1. Let f : Sn−1 → Y be a null-homotopic map. Denote by

[Dn, Y ]f on Sn−1

the set of homotopy classes of maps H : Dn → Y rel Sn−1 with restriction H|Sn−1 = f : Sn−1 →
Y .

Precomposition by c yields an action of πn(Y ) on [Dn, Y ]f on Sn−1 , which we denote by α · H.
With appropriate sign conventions (namely that the pinch map p : Sn → Sn ∨ Sn send the
upper hemisphere to the first summand), this is a left action.

Proposition 3.2. The difference construction satisfies the following properties.

1. H ∪H ′ = −H ′ ∪H.

2. (α ·H) ∪H ′ = α + (H ∪H ′) for any α ∈ πn(Y ).
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3. H ∪ (α ·H ′) = (H ∪H ′)− α for any α ∈ πn(Y ).

Proof. 1. Using the model for the sphere Sn ∼= Sn−1 ∧ S1, note that H ∪H ′ and H ′ ∪H differ
by a flip of the last suspension coordinate:

Sn−1 ∧ S1 ∼= Sn

id∧(−1)
��

H∪H′
// Y.

Sn−1 ∧ S1 ∼= Sn
H′∪H

88

2. Straightforward (with an appropriate sign convention).

3. From 1 and 2, we conclude:

H ∪ (α ·H ′) = − [(α ·H ′) ∪H]

= − [α + (H ′ ∪H)]

= −(H ′ ∪H)− α

= (H ∪H ′)− α.

Note that to cover the case n = 1, we allowed “addition” to be non-commutative.

Proposition 3.3. H ' H ′ rel Sn−1 holds if and only if H ∪H ′ = 0 ∈ πn(Y ) holds.

Proof. (⇒) A homotopy F from H to H ′ rel Sn−1 defines a filler as illustrated here:

Sn
� _

��

H∪H′
// Y

Dn+1
F

<<

which proves H ∪H ′ = 0 ∈ πn(Y ).

(⇐) Let us prove the relation

(H ∪H ′) ·H ′ ' H rel Sn−1

from which we deduce the result:

H ′ ' 0 ·H ′ rel Sn−1

' (H ∪H ′) ·H ′ rel Sn−1

' H rel Sn−1.
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Up to rescaling, the map

(H ∪H ′) ·H ′ : Dn ∼= Sn−1 × [0, 3]/
(
Sn−1 × {3}

)
→ Y

is given by

(x, t) 7→


H ′(x, t) if 0 ≤ t ≤ 1

H ′(x, 2− t) if 1 ≤ t ≤ 2

H(x, t− 2) if 2 ≤ t ≤ 3.

The formula

(x, t, s) 7→


H ′(x, st) if 0 ≤ t ≤ 1

H ′(x, s(2− t)) if 1 ≤ t ≤ 2

H(x, t− 2) if 2 ≤ t ≤ 3

for s ∈ [0, 1] provides a homotopy rel Sn−1 between (H ∪H ′) ·H ′ and a map which is clearly
homotopic to H rel Sn−1.

Proposition 3.4. Given H as above and any α ∈ πn(Y ), there exists an H ′ satisfying H∪H ′ =
α ∈ πn(Y ).

Proof. Take H ′ = (−α) ·H. By 3.3, we have H ∪H = 0 ∈ πn(Y ). By 3.2, we have the equality:

H ∪ [(−α) ·H] = (H ∪H)− (−α)

= 0 + α

= α.

In fact, more is true.

Proposition 3.5. The action of πn(Y ) on the set [Dn, Y ]f on Sn−1 is free and transitive.

Proof. Free. Assume α ·H ' H rel Sn−1 for α ∈ πn(Y ). By 3.3 and 3.2, we conclude:

(α ·H) ∪H = 0 ∈ πn(Y )

=α + (H ∪H)

=α + 0

=α.

Transitive. Given two maps H,H ′ : Dn → Y satisfying H|Sn−1 = H ′|Sn−1 = f , they are in the
same πn(Y )-orbit, by the relation

(H ∪H ′) ·H ′ ' H rel Sn−1

which was proved in 3.3.
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Upshot. The difference construction H∪H ′ wants to be H−H ′, but this does not make sense,
because elements of [Dn, Y ]f on Sn−1 cannot be added or subtracted. The next best thing is true:
[Dn, Y ]f on Sn−1 is a torsor for πn(Y ), and H ∪H ′ ∈ πn(Y ) is the unique element satisfying

(H ∪H ′) ·H ′ = H ∈ [Dn, Y ]f on Sn−1 .
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