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1 Background material

Proposition 1.1. Let n ≥ 1 and let G be an abelian group. For any abelian group M , the
cohomology of K(G, n) with coefficients in M satisfies

Hn (K(G, n);M) ∼= HomZ(G,M).

Proof. By the Hurewicz theorem, we have

Hn (K(G, n);Z) ∼= πn (K(G, n)) ∼= G.

By the universal coefficient theorem, we have

Hn (K(G, n);M) ∼= HomZ (Hn(K(G, n);Z),M)

∼= HomZ(G,M).

Definition 1.2. Let n ≥ 1 and let G be an abelian group. The fundamental class of K(G, n)
is the cohomology class

ιn ∈ Hn (K(G, n);G)

corresponding to idG via the isomorphism Hn (K(G, n);G) ∼= HomZ(G,G).

More explicitly, let ψ : πnK(G, n)
∼=−→ G be some chosen identification, and let

h : πn (K(G, n))
∼=−→ Hn (K(G, n);Z)

denote the Hurewicz morphism, defined by h(α) = α∗(un), where un ∈ Hn(Sn) is a suitably
chosen generator. Then ιn is defined by the equation

〈ιn, h(α)〉 = ψ(α)
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for all α ∈ πnK(G, n). Here the brackets denote the evaluation pairing

〈−,−〉 : Hn(W ;G)⊗Z Hn(W ;Z)→ G

between cohomology and homology.

For any map α : X → K(G, n), consider the induced “pullback” map on cohomology

α∗ : Hn (K(G, n);G)→ Hn(X;G)

and take the pullback of the fundamental class α∗(ιn) ∈ Hn(X;G). Since cohomology is
homotopy invariant, this defines a function

θX : [X,K(G, n)]∗ → Hn(X;G)

α 7→ α∗(ιn)

which is natural in X.

Proposition 1.3. The map θX is a group homomorphism.

Proof. Hatcher § 4.3 Exercise 7.

Some of the arguments will require working with n = 0, which we treat separately.

For any space X and abelian group M , the zeroth cohomology is

H0 (X;M) ∼= HomZ (H0(X;Z),M)

∼= HomZ (Z〈π0(X)〉,M)

∼= HomSet (π0(X),M)

∼=
∏
π0(X)

M.

Here Z〈π0(X)〉 denotes the free abelian group on the set π0(X).

Definition 1.4. Let G be an abelian group. The fundamental class of K(G, 0) is the coho-
mology class

ι0 ∈ H0 (K(G, n);G)

corresponding to idG via the isomorphism H0 (K(G, n);G) ∼= HomSet(G,G).

We also denote by ι0 ∈ H̃0 (K(G, n);G) its image via the canonical quotient map

H0 (K(G, n);G)� H̃0 (K(G, n);G) .

Proposition 1.5. Let n = 0 and assume X is the coproduct of its path components (which
holds in particular if X is locally path-connected, in particular if X a CW complex). Then the
maps

θ : [X,K(G, 0)]→ H0(X;G)

θ : [X,K(G, 0)]∗ → H̃0(X;G)

defined by pulling back the fundamental class ι0 are isomorphisms.
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Proof. Since X is the coproduct of its path-components and K(G, 0) is homotopically discrete,
we have

[X,K(G, 0)] ∼= HomSet (π0(X), G) ∼=
∏
π0(X)

G

[X,K(G, 0)]∗ ∼= HomSet∗ (π0(X), G) ∼=
∏

π0(X)\{C0}

G

where C0 ∈ π0(X) denotes the basepoint component.

The right-hand sides H0(X;G) and H̃0(X;G) are also naturally isomorphic to those respective
products. One readily checks that θ induces an isomorphism (of abelian groups).
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2 Main statements

Lemma 2.1. Let n ≥ 1 and assume X =
∨
j∈J S

n is a wedge of n-spheres. Then

θ : [
∨
j

Sn, K(G, n)]∗
'−→ H̃n(

∨
j

Sn;G)

is an isomorphism.

Proof. Step 1. Single sphere. Let ψ : πnK(G, n) ∼= G be an identification as in the definition
of θ. Then the composite

[Sn, K(G, n)]∗
θSn

// H̃n(Sn;G)

∼=
��

α∗(ιn)
_

��

HomZ

(
H̃n(Sn), G

)
∼= evun

��

〈α∗(ιn),−〉 = 〈ιn, α∗(−)〉
_

��

G 〈ιn, α∗(un)〉 = 〈ιn, h(α)〉 = ψ(α)

is the isomorphism ψ. Therefore θSn is an isomorphism.

Step 2. Arbitrary wedge. Both functors [−, K(G, n)]∗ and H̃n(−;G) take wedges to prod-
ucts, so that the case of a single sphere proves the statement, as illustrated in the commutative
diagram:

[
∨
j S

n, K(G, n)]∗

∼=
��

θ∨
j Sn

∴∼=

// H̃n(
∨
j S

n;G)

∼=
��∏

j[S
n, K(G, n)]∗ ∏

j θSn

∼=
//
∏

j H̃
n(Sn;G)

Proposition 2.2. Let n ≥ 1. Then the diagram

[ΣX,K(G, n)]∗

θnΣX

// H̃n(ΣX;G)

[X,K(G, n− 1)]∗ ∼= [X,ΩK(G, n)]∗
θn−1
X

//

∼=

OO

H̃n−1(X;G)

Σ

OO
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commutes up to sign.

In particular, if X has the homotopy type of a CW complex (so that the suspension isomorphism
on homology holds), then the bottom map θn−1

X is an isomorphism if and only if the top map
θnΣX is.

Theorem 2.3. Let n ≥ 0 and G be an abelian group. If X is a CW complex, then the natural
map

θX : [X,K(G, n)]∗
∼=−→ H̃n(X;G)

is an isomorphism.

Proof. The case n = 0 has already been proved in 1.5, so we may assume n ≥ 1. In that case,
we may assume X is path-connected WLOG.

Step 1. Induction on skeleta. We will prove the statement by induction on the dimension
k of the CW complex Xk. For dimension k = 0, θX0 : 0→ 0 is trivially an isomorphism.

Now assume that the statement holds for all CW complexes of dimension less than k. Consider
the cofiber sequence

∨
Sk−1 // Xk−1

// Xk
//
∨
Sk // ΣXk−1.

Applying the natural map θ and writing K := K(G, n), we obtain a map of exact sequences

[ΣXk−1, K]∗

��

// [
∨
Sk, K]∗

∼=
��

// [Xk, K]∗

��

// [Xk−1, K]∗

∼=
��

// [
∨
Sk−1, K]∗

∼=
��

H̃n(ΣXk−1;G) // H̃n(
∨
Sk;G) // H̃n(Xk;G) // H̃n(Xk−1;G) // H̃n(

∨
Sk−1;G)

where θ is an isomorphism for wedges of spheres by 2.1 and for Xk−1 by induction hypothesis.
By the four-lemma for epimorphisms, θXk

is an epimorphism. Since this argument works
simultaneously for all CW complexes of dimension at most k, it also applies to ΣXk−1 so that
θΣXk−1

is an epimorphism. By the four-lemma for monomorphisms, θXk
is a monomorphism,

and thus an isomorphism.

Step 2. The induction stops. Consider the skeletal inclusion Xn+1 ↪→ X and the induced
restriction maps

[X,K(G, n)]∗

��

θX
// H̃n(X;G)

��

[Xn+1, K(G, n)]∗
θXn+1

∼=
// H̃n(Xn+1;G)

where the bottom map is an isomorphism by Step 1. We want to show that the top map θX is
an isomorphism. It suffices to show that both downward restriction maps are isomorphisms.
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The restriction map H̃n(X;G)
'−→ H̃n(Xn+1;G) is an isomorphism, by cellular cohomology.

The restriction map [X,K(G, n)]∗ → [Xn+1, K(G, n)]∗ is surjective, i.e. any map f : Xn+1 →
K(G, n) can be extended to X. Indeed, for any (n+ 2)-cell with attaching map ϕ : Sn+1 → X,
the composite f ◦ ϕ : Sn+1 → K(G, n) is null, by the condition πn+1K(G, n) = 0. Thus f can
be extended to Xn+2 and likewise for all higher skeleta.

The restriction map [X,K(G, n)]∗ → [Xn+1, K(G, n)]∗ is injective. Assume two maps f, g : X →
K(G, n) have homotopic restrictions f |Xn+1 ' g|Xn+1 via a (pointed) homotopy

F : Xn+1 ∧ I+ → K(G, n).

Since Xn+1 ∧ I+ ∪ X ∧ ∂I+ ⊆ X ∧ I+ is a subcomplex containing all cells of dimension up to
n+ 1, the remaining cells of X ∧ I+ have dimension at least n+ 2. Hence, the same argument
as above allows to extend the homotopy F to a homotopy

F : X ∧ I+ → K(G, n).

between f and g.

More details can be found in tom Dieck § 17.5, particularly Theorem 17.5.1.

Remark 2.4. One can weaken the assumption to X being well-pointed and having the homotopy
type of a CW complex. Indeed, the functor H̃n(−;G) is homotopy invariant, while the functor
[−, K(G, n)]∗ is invariant under pointed homotopy equivalence.
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A digression

To show that the restriction [X,K(G, n)]∗ → [Xn+1, K(G, n)]∗ is a bijection, one might be
tempted by the following argument. Consider the cofiber sequence∨

Sn+1 → Xn+1 → Xn+2 →
∨

Sn+2

and apply the functor [−, K]∗, yielding the exact sequence

[
∨

Sn+2, K]∗ → [Xn+2, K]∗ → [Xn+1, K]∗ → [
∨

Sn+1, K]∗.

The outer terms are both trivial:

[
∨

Sn+2, K]∗ ∼=
∏

πn+2K = 0

[
∨

Sn+1, K]∗ ∼=
∏

πn+1K = 0

and thus the exact sequence proves the bijectivity of [Xn+2, K]∗
'−→ [Xn+1, K]∗. The same

argument applies to all higher skeleta, proving that the map

lim
k

[Xk, K]∗
'−→ [Xn+1, K]∗

is a bijection.

However, the natural map
[X, Y ]∗ → lim

k
[Xk, Y ]∗

is not in general a bijection. Rather, it sits in an exact sequence

0→ lim
k

1[ΣXk, Y ]∗ → [X, Y ]∗ → lim
k

[Xk, Y ]∗ → 0

so that the argument above only shows surjectivity, not injectivity. Maps X → Y in the kernel
are those that become null when restricted to every skeleton Xk, called (skeletally) phantom
maps. See May-Ponto Proposition 2.1.9 and Corollary 2.1.14, as well as § 2.4 which contains
a proof that there are uncountably many phantom maps CP∞ → S3.

The issue here is that the equation X ∼= colimkXk holds in Top and Top∗, but not in the
homotopy category Ho(Top) or Ho(Top∗). Since each skeletal inclusion is a cofibration, X is
in fact the homotopy colimit of its skeleta X ' hocolimkXk, which is very different from being
a colimit in the homotopy category.
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3 Alternate proofs

In this section, we outline other proofs of the main theorem 2.3.

3.1 Eilenberg-Steenrod axioms

Proof. One can show that the functors hn := [−, K(G, n)]∗ satisfy the Eilenberg-Steenrod
axioms for a reduced cohomology theory, including the dimension axiom hn(point) = 0 for all
n.

By uniqueness, we conclude that [−, K(G, n)]∗ is naturally isomorphic to ordinary reduced

cohomology H̃n (−;h0(S0)) with coefficients

h0(S0) = [S0, K(G, 0)]∗

= π0K(G, 0)

∼= G.

3.2 Brown representability

Proof. Reduced cohomology H̃n(−;G), as a functor CWop
∗,0 → Set on the category of pointed

connected CW complexes, satisfies the assumptions of Brown representability. Therefore it is
represented by an object Kn, i.e. satisfying a natural isomorphism

H̃n(X;G) ∼= [X,Kn]∗.

Evaluating the functor on spheres Sk for k ≥ 1, we obtain

πk(Kn) = [Sk, Kn]∗

∼= H̃n(Sk;G)

∼=

{
G if k = n

0 if k 6= n

so that Kn is an Eilenberg-MacLane space Kn ' K(G, n). Note that the isomorphism

H̃0(X;G) ∼= [X,K(G, 0)]∗

has already been established directly.

To conclude, note that by Yoneda, the natural isomorphism of functors has the form

[X,Kn]∗ ∼= H̃n(X;G)

α 7→ α∗(ιn)

for the class ιn ∈ H̃n(Kn) corresponding to id ∈ [Kn, Kn]∗.

8



3.3 Cellular cohomology and obstruction theory

Proof. Let n ≥ 1. WLOG the space K(G, n) is a CW complex with a single 0-cell and no cells
in dimensions 0 < i < n.

Any map f : X → K(G, n) is homotopic to a cellular map, and hence constant on the skeleton
Xn−1. If f is constant on Xn−1, consider its restriction

f |Xn : Xn/Xn−1
∼=

∨
n−cells ofX

Sn → K(G, n)

which defines an element of πnK(G, n) ∼= G for each n-cell of X, i.e. a cellular n-cochain
κ(f) ∈ Cn

CW (X;G) with coefficients in G.

Two maps f, f ′ : X → K(G, n) are homotopic if and only if they are homotopic rel Xn−2.

Two maps f, f ′ : Xn → K(G, n) that send Xn−1 to the basepoint are homotopic rel Xn−2 if
and only if the corresponding cochains κ(f) and κ(f ′) differ by a coboundary. The “only if”
direction guarantees that the function

κ : [Xn, K(G, n)]∗ → Cn
CW (X;G)/Bn

CW (X;G)

is well defined. The “if” direction guarantees that it is injective.

A map f : Xn → K(G, n) extends to Xn+1 if and only if the corresponding cochain κ(f) is a
cocycle, i.e. satisfies δκ(f) = 0 ∈ Cn+1

CW (X;G). The “only if” direction guarantees that the top
map in the diagram

[Xn+1, K(G, n)]∗

res

��

κ
// // Zn

CW (X;G)/Bn
CW (X;G)
� _

��

[Xn, K(G, n)]∗
� �

κ

// Cn
CW (X;G)/Bn

CW (X;G)

exists. The “if” direction guarantees that it is surjective.

An extension of f : Xn → K(G, n) to Xn+1, when it exists, is unique up to homotopy, as a
consequence of πn+1K(G, n) = 0. Therefore the restriction

res : [Xn+1, K(G, n)]∗ ↪→ [Xn, K(G, n)]∗

is injective, and so is the top map

κ : [Xn+1, K(G, n)]∗
'−→ Zn

CW (X;G)/Bn
CW (X;G) = Hn

CW (X;G).

Any map f : Xn+1 → K(G, n) extends to X, and the extension is unique up to homotopy. This
is again a consequence of πiK(G, n) = 0 for all i > n.

Combining all this, we obtain the isomorphism

[X,K(G, n)]∗
res

'
// [Xn+1, K(G, n)]∗

κ

'
// Hn

CW (X;G)

to cellular cohomology of X.
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More details can be found here:

http://mathoverflow.net/questions/5518/dirty-proof-that-eilenberg-maclane-spaces-represent-cohomology

as well as in Mosher-Tangora Chapter 1.

10

http://mathoverflow.net/questions/5518/dirty-proof-that-eilenberg-maclane-spaces-represent-cohomology


4 A fun application

Proposition 4.1. The degree 2 map S1 2−→ S1 admits no cokernel in the homotopy category of
pointed spaces Ho(Top∗).

Proof. Assume to the contrary that there exists a cokernel

S1 2−→ S1 → X.

For any abelian group G and n ≥ 0, consider the Eilenberg-MacLane K(G, n) and apply the
functor [−, K(G, n)]∗ to the cokernel sequence above. This yields a kernel sequence

[X,K(G, n)]∗ → [S1, K(G, n)]∗
2∗−→ [S1, K(G, n)]∗

from which we deduce

H̃n(X;G) ∼= {α ∈ H̃n(S1;G) | α ◦ 2 = 0}

= {α ∈ H̃n(S1;G) | 2α = 0}

=

{
2G if n = 1

0 if n 6= 1.

Here 2G := {g ∈ G | 2g = 0} denotes the 2-torsion in G. In particular, we obtain the
cohomology groups

H̃1(X;Z) = 0

H̃1(X;Z/2) = Z/2.

Now consider the short exact sequence of coefficients

0→ Z 2−→ Z� Z/2→ 0

and the induced long exact sequence on cohomology

. . .→ H1(X;Z)→ H1(X;Z)→ H1(X;Z/2)
δ−→ H2(X;Z)→ . . . (1)

whose terms can be rewritten as

. . .→ 0→ 0→ Z/2 δ−→ 0→ . . . .

This sequence cannot be exact, providing a contradiction.

There is a slight problem in this proof. Technically, the identification [X,K(G, n)]∗ ∼= H̃n(X;G)
requires that X have the homotopy type of a CW complex. In the argument above, we really
mean [X,K(G, n)]∗ the whole time. The functors [−, K(G, n)]∗ also have the long exact se-
quence (1), as we now show.
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Proposition 4.2. Let
0→ A→ B → C → 0

be a short exact sequence of abelian groups. Let K(−, n) be a functorial construction of
Eilenberg-MacLane spaces as CW complexes. Then the resulting sequence

K(A, n)→ K(B, n)→ K(C, n)

is a fiber sequence.

Proof. WLOG the construction K(−, n) sends the zero morphism to the constant map. In
particular, the composite A → C is zero, so that the composite K(A, n) → K(C, n) is the
constant map. This yields a canonical map to the homotopy fiber F of K(B, n)→ K(C, n) as
illustrated in the commutative diagram

K(A, n)

��

// K(B, n) // K(C, n).

F

99

The long exact sequence on homotopy of the fibration F → K(B, n) → K(C, n) shows that
K(A, n)

∼−→ F is a weak homotopy equivalence. However, it is a fact that the homotopy fiber of
a map between spaces having the homotopy type of CW complexes also has the homotopy type
of a CW complex [2, Proposition 12] [1, Theorem 3]. In particular, F has the homotopy type

of a CW complex. By the Whitehead theorem, K(A, n)
'−→ F is a homotopy equivalence.

The iterated fiber sequence has the form

. . . // ΩK(B, n) // ΩK(C, n) // K(A, n) // K(B, n) // K(C, n)

which can be rewritten as

∗ // K(A, 0) // K(B, 0) // K(C, 0) // K(A, 1) // K(B, 1) // K(C, 1) //

. . . // K(C, n− 1) // K(A,n) // K(B,n) // K(C, n).

Applying the functor [X,−]∗ to this fiber sequence yields the desired long exact sequence, up
to signs of the maps.
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5 Pointed versus unpointed

Question 5.1. When is cohomology also given by unpointed maps to an Eilenberg-MacLane
space?

The case n = 0 stated in 1.5 is very misleading. One may think that in general, pointed maps
correspond to reduced cohomology while unpointed maps correspond to unreduced cohomology.
As we will see shortly, that is very false for n = 1 and irrelevant for n > 1.

Let us study the natural map η : [X, Y ]∗ → [X, Y ] which forgets pointedness. Recall the
following basic fact about well-pointed spaces.

Proposition 5.2. Let (X, x0) be a well-pointed space and (Y, y0) any pointed space. Then a
map f : X → Y is (freely) homotopic to a pointed map if and only if f(x0) is in the path
component of y0.

Though this fact is readily proved directly, we will recover it – and more – using a different
perspective.

If (X, x0) is well-pointed, i.e. the inclusion {x0} ↪→ X is a cofibration, then applying Map(−, Y )
yields a fibration

Map(X, Y )
evx0−−→ Y

which evaluates at the basepoint x0 ∈ X. Note that evx0 is surjective. The strict fiber of evx0

is
ev−1

x0
(y0) = Map∗(X, Y )

the subspace consisting of pointed maps. We obtain a fiber sequence

Map∗(X, Y )
ι−→ Map(X, Y )

evx0−−→ Y

and therefore a long exact sequence of homotopy groups

. . .→ π1 Map(X, Y )→ π1Y
∂−→ π0 Map∗(X, Y )→ π0 Map(X, Y )→ π0(Y )→ 0

whose last terms can be rewritten as

. . .→ π1Y
∂−→ [X, Y ]∗

η−→ [X, Y ]→ π0(Y )→ 0. (2)

Proposition 5.2 was stating the exactness of this sequence at [X, Y ].

Exactness at [X, Y ]∗ says that two pointed maps f, g : X → Y are freely homotopic if and only
if they are in the same orbit under the action of π1(Y ). See Hatcher Proposition 4A.1 for a
more explicit description of this action.

As a consequence of the exact sequence (2), we obtain a variant of Hatcher Proposition 4A.2.

Proposition 5.3. Let (X, x0) be a well-pointed space and (Y, y0) any pointed space. Consider
the natural map η : [X, Y ]∗ → [X, Y ].

1. The map η is surjective if and only if Y is path-connected.
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2. When Y is path-connected, η induces a bijection

[X, Y ]∗/π1(Y )
'−→ [X, Y ]

where the left-hand side denotes the orbit set of [X, Y ]∗ under the action of π1(Y ).

3. In particular, if Y is simply-connected, then η is a bijection.

Corollary 5.4. Let (X, x0) be a well-pointed space, n ≥ 2, and G an abelian group. Then the
natural map

[X,K(G, n)]∗
'−→ [X,K(G, n)]

is a bijection.

If moreover X has the homotopy type of a CW complex, then both sides are naturally isomorphic
to the cohomology group Hn(X;G) ∼= H̃n(X;G).

Proposition 5.5. Let n ≥ 1 and let G and H be groups (abelian if n ≥ 2). Consider Eilenberg-
MacLane spaces K(G, n) and K(H,n), where K(G, n) is a CW complex. Then the map

[K(G, n), K(H,n)]∗
πn−→ HomGp(G,H)

is a bijection.

Proof. Hatcher § 4.3 Exercise 4.

When G and H are abelian, it follows from 2.3. Alternately, it can be shown directly with a
model of K(G, n) having generators of G as n-cells and relations as (n + 1)-cells. In fact, the
direct proof also proves the next statement.

Proposition 5.6. Let X be a path-connected CW complex and H a group. Then the map

[X,K(H, 1)]∗
π1−→ HomGp (π1(X), H)

is a bijection.

Proof. Homework 11 Problem 2.

Proposition 5.7. Let (X, x0) be a well-pointed space and (Y, y0) any pointed space. Then for
any n ≥ 1, the actions of π1(Y ) on [X, Y ]∗ and on πn(Y ) are compatible. More precisely, the
equation

(γ · f)∗(α) = γ · f∗(α)

holds or all γ ∈ π1(Y ), pointed map f : X → Y , and α ∈ πn(X). In other words, the diagram

[X, Y ]∗

γ·−
��

πn
// HomGp (πn(X), πn(Y ))

(γ·−)∗
��

[X, Y ]∗
πn

// HomGp (πn(X), πn(Y ))

commutes.
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Proof. Hatcher § 4.A Exercise 2.

Corollary 5.8. Let X be a path-connected CW complex and H a group. Then the map

[X,K(H, 1)]
π1−→ HomGp (π1(X), H)/conjugation in H

is a bijection.

In particular, we have

[K(G, 1), K(H, 1)] ∼= HomGp (G,H)/conjugation in H

Proof. Follows from 5.3, 5.6, 5.7, and the fact that the action of π1 (K(H, 1)) on itself is by
conjugation.

Corollary 5.9. Let X be a CW complex and G an abelian group. Then the map

[X,K(G, 1)]∗
'−→ [X,K(G, 1)]

is a bijection.

Moreover, both sides are naturally isomorphic to the cohomology group H1(X;G) ∼= H̃1(X;G).

Proof. The case of X path-connected is proved like 5.8. The general case follows from the fact
that X is the coproduct of its path components, along with the isomorphism

[X,K(G, 1)]∗ ∼= [C0, K(G, 1)]∗ ×
∏

C∈π0(X)\{C0}

[C,K(G, 1)]

where C0 ∈ π0(X) denotes the basepoint component.
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