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1 Background material

Proposition 1.1. For all n ≥ 1, we have πn(Sn) ∼= Z, generated by the class of the identity
map id : Sn → Sn.

Proof. The long exact sequence in homotopy of the Hopf fibration S1 → S3 η−→ S2 yields the

isomorphism π2(S2)
∼=−→ π1(S1). The Freudenthal suspension theorem guarantees that π2(S2) is

already stable, so that we have isomorphisms

π2(S2)
Σ

∼=
// π3(S3)

Σ

∼=
// π4(S4)

Σ

∼=
// . . . .

Moreover, the suspension map

Z ∼= π1(S1)
Σ
// // π2(S2) ∼= Z

is surjective, and thus an isomorphism. To conclude, note that class [idS1 ] ∈ π1(S1) is a
generator, and the suspension map sends the identity to the identity:

Σ([idSn−1 ]) = [idSn ] ∈ πn(Sn).

Alternate proof. Using a bit of differential topology (or a more geometric construction along
the lines of Hatcher § 4.1 Exercise 15), consider the degree of a smooth map f : Sn → Sn. Since
every homotopy class [f ] contains a smooth representative, and all such maps have the same
degree (i.e. degree is a homotopy invariant), this defines a function

deg : πn(Sn)→ Z.

One readily shows that deg is a group homomorphism. One can show moreover that two maps
Sn → Sn with the same degree are homotopic, i.e. deg is injective. The equality deg([id]) = 1
shows that deg is surjective, hence an isomorphism.
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Remark 1.2. One can show that the definition of degree in differential topology coincides with
the following homological definition. The degree of a map f : Sn → Sn is the (well-defined)
integer such that the map induced on homology

f∗ : Hn(Sn)→ Hn(Sn)

is multiplication by deg(f), noting the fact Hn(Sn) ' Z. In other words, if u ∈ Hn(Sn) is a
generator, then we have f∗(u) = deg(f)u ∈ Hn(Sn).

Lemma 1.3. For n ≥ 2, we have

πn(Sn ∨ Sn) ∼= Z⊕ Z,

the free abelian group generated by the two summand inclusions ιj : Sn ↪→ Sn∨Sn (with j = 1, 2).

For n = 1, we have
π1(S1 ∨ S1) ∼= Z ∗ Z,

the free group generated by the two summand inclusions ιj : S1 ↪→ S1 ∨ S1.

Proof. The case n = 1 follows from the Van Kampen theorem. Now assume n ≥ 2.

Since Sn is (n−1)-connected, the inclusion Sn∨Sn → Sn×Sn is n+n−1 = 2n−1 connected,
and in particular an isomorphism on πk for k ≤ 2n−2 = n+(n−2). We obtain the isomorphism

πn(Sn ∨ Sn) ∼= πn(Sn × Sn)

∼= πn(Sn)× πn(Sn)

∼= πn(Sn)⊕ πn(Sn)

∼= Z⊕ Z,

The generators [idj] ∈ πn(Sn) on the right-hand side correspond to summand inclusions ιj : Sn ↪→
Sn ∨ Sn on the left-hand side.

Proposition 1.4. Let J be a set. For n ≥ 2, we have

πn(
∨
j∈J

Sn) ∼=
⊕
j∈J

Z,

the free abelian group generated by the summand inclusions ιj : Sn ↪→
∨
j∈J S

n.

For n = 1, we have

π1(
∨
j∈J

S1) ∼= ∗j∈JZ,

the free group generated by the summand inclusions ιj : S1 ↪→
∨
j∈J S

1.

Proof. The case where J is finite follows by applying the same argument as in 1.3 inductively.

For an arbitrary set J , note that a compact subspace of
∨
j∈J S

n lives in a finite subwedge∨
j∈Jα S

n, for some finite subset Jα ⊆ J . Therefore we obtain a (filtered) colimit

πn(
∨
j∈J

Sn) ∼= colim
α

πn(
∨
j∈Jα

Sn)
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where Jα runs over all finite subsets of J (c.f. Homework 6 Problem 3). Said colimit is as
claimed in the statement: free abelian group when n ≥ 2 and free group when n = 1.
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2 Weak equivalence implies homology isomorphism

Proposition 2.1. Let f : X → Y be an n-connected map for some n ≥ 0. Then f induces an
isomorphism on integral homology f∗ : Hi(X;Z) → Hi(Y ;Z) for i < n and a surjection when
i = n.

In particuliar, any weak homotopy equivalence induces an isomorphism on integral homology
H∗(X;Z)

'−→ H∗(Y ;Z) (and thus on homology and cohomology with any coefficients, by the
universal coefficient theorem).

Direct proof. The case n = 0 is clear, since H0(X) is the free abelian group on π0(X). Now we
assume n ≥ 1.

WLOG X and Y are path-connected. To prove this, note that the natural transformation∐
C∈π0(X) C → X is a weak homotopy equivalence and induces an isomorphism on homology.

WLOG f is an embedding, replacing Y by the mapping cylinder M(f) if needed.

By the long exact sequence in homotopy groups of the pair (Y,X), the fact that f : X → Y is
n-connected is equivalent to the vanishing of relative homotopy groups πk(Y,X) = 0 for k ≤ n.

By the long exact sequence in homology groups of the pair (Y,X), the desired conclusion on f
is equivalent to the vanishing of relative homology groups Hk(Y,X) = 0 for k ≤ n.

Let α ∈ Hk(Y,X). Then by gluing k-simplices appropriately, one can realize α as coming from
a k-dimensional CW-complex K, with a (k − 1)-dimensional subcomplex L ⊂ K (realizing the
boundary) which is sent to X. See Hatcher Proposition 4.21 for details. In other words, there
is a map

σ : (K,L)→ (Y,X)

and a class α ∈ Hk(K,L) satisfying σ∗(α) = α ∈ Hk(Y,X). The condition πk(Y,X) = 0
along with the compression lemma guarantees that σ is homotopic rel L to a map σ′ : K → Y
landing entirely in X. Thus σ∗ = σ′∗ : Hk(K,L) → Hk(Y,X) is zero, as it factors through
Hk(X,X) = 0.

Using CW-approximation. We first show that CW-approximation induces an isomorphism on
homology. Let Sing(X) denote the singular set of X (which is a simplicial set) and |Sing(X)|
its geometric realization. One can show that the natural map ε : |Sing(X)| → X is a weak
homotopy equivalence. Moreover, |Sing(X)| admits a CW-structure with a k-cell for each k-
simplex in Sing(X), in which the cellular chain complex of |Sing(X)| is the chain complex
corresponding to the simplicial abelian group obtained by taking the levelwise free abelian
group on Sing(X) – none other than the singular chain complex of X. Thus |Sing(X)| and X
have the same integral homology, and in fact ε induces an isomorphism on integral homology.

This shows that the CW-approximation ε : |Sing(X)| → X induces an isomorphism on homol-
ogy. But by homotopy uniqueness of CW-approximation, the same conclusion holds for any
CW-approximation.

Therefore, we may assume that X and Y are CW-complexes. Indeed, consider the commutative
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diagram

ΓX

γX ∼
��

Γf
// ΓY

γY∼
��

X
f

// Y

where Γ is a functorial CW-approximation. Then f is n-connected if and only Γf is. Since γX
and γY induce isomorphisms on integral homology, the conclusion about f holds if and only if
it holds for Γf .

By the (strong form of the) Whitehead theorem, the induced map

f∗ : [W,X]→ [W,Y ]

is surjective for any CW-complex W of dimension d ≤ n and a bijection for d < n. Taking
W = Yn the n-skeleton of Y , the map

f∗ : [Yn, X]→ [Yn, Y ]

is surjective, so that there is a map g : Yn → X satisfying [fg] = [ιn] : Yn → Y , i.e. making the
diagram

X
f
// Y

Yn

g

``

ιn

OO

commute up to homotopy, where ιn : Yn ↪→ Y is the skeletal inclusion. By cellular homology,
ιn : Yn ↪→ Y is surjective on homomology Hk for k ≤ n, and thus so is f .

It remains to prove injectivity on homology Hk for k < n. Let α ∈ Hk(X) be in the kernel of
f∗ : Hk(X) → Hk(Y ), with k < n. Since the skeletal inclusion ιn−1 : Xn−1 → X is surjective
on homology Hk, there is a class α ∈ Hk(Xn−1) satisfying ιn−1∗(α) = α ∈ Hk(X). By cellular
approximation, f : X → Y may be assumed cellular, so that its restriction f |Xn−1 factors
through Yn−1 (and in particular through Yn), making the square in the diagram

X
f
// Y

Xn−1

ιn−1

OO

f |Xn−1

// Yn

g

bb

ιn

OO

commute. Now up to homotopy, we have equality of maps Xn−1 → Y

fgf |Xn−1 = ιnf |Xn−1

= fιn−1
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but recall that the map
f∗ : [Xn−1, X]→ [Xn−1, Y ]

is injective, which implies the equality gf |Xn−1 = ιn−1 up to homotopy. In homology we obtain

α = ιn−1∗(α)

= g∗f |Xn−1∗(α)

= g∗(0)

= 0.

Indeed, the class f |Xn−1∗(α) satisfies

ιn∗f |Xn−1∗(α) = f∗ιn−1∗(α)

= f∗(α)

= 0

but again by cellular homology, ιn∗ : Hk(Yn)→ Hk(Y ) is injective for k < n.

Remark 2.2. If all we care about is the special case n =∞, then no need to play around with
skeletal inclusions. By Whitehead, a weak homotopy equivalence between CW-complexes is a
homotopy equivalence, and therefore induces an isomorphism on homology.

Corollary 2.3. Let f : X → Y be an n-connected map for some n ≥ 0, and let M be an abelian
group. Then the following holds.

1. The induced map on homology with coefficients in M

f∗ : Hi(X;M)→ Hi(Y ;M)

is an isomorphism for i < n and a surjection when i = n.

2. The induced map on cohomology with coefficients in M

f ∗ : H i(Y ;M)→ H i(X;M)

is an isomorphism for i < n and an injection when i = n.

Proof. 1. The universal coefficient theorem for homology provides a map of short exact se-
quences

0 // Hi(X;Z)⊗Z M

��

// Hi(X;M)

��

// TorZ1 (Hi−1(X;Z),M)

��

// 0

0 // Hi(Y ;Z)⊗Z M // Hi(Y ;M) // TorZ1 (Hi−1(Y ;Z),M) // 0
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where the two outer downward maps are isomorphisms when i < n, and hence so is the middle
downward map Hi(X;M)

'−→ Hi(Y ;M).

In the case i = n, the left downward arrow is surjective, while the right downward arrow is an
isomorphism. Therefore the middle downward map Hi(X;M)� Hi(Y ;M) is surjective.

2. The universal coefficient theorem for cohomology provides a map of short exact sequences

0 // Ext1
Z (Hi−1(Y ;Z),M)

��

// H i(Y ;M)

��

// HomZ (Hi(Y ;Z),M)

��

// 0

0 // Ext1
Z (Hi−1(X;Z),M) // H i(X;M) // HomZ (Hi(X;Z),M) // 0

where the two outer downward maps are isomorphisms when i < n, and hence so is the middle
downward map H i(Y ;M)

'−→ H i(X;M).

In the case i = n, the left downward arrow is an isomorphism, while the right downward arrow
is injective. Therefore the middle downward map H i(Y ;M) ↪→ H i(X;M) is injective.

Example 2.4. The map Sn → ∗ is n-connected. The induced map on homology with coefficients

f∗ : Hi(S
n;M)→ Hi(∗;M)

is indeed an isomorphism for i < n, and the surjection M � 0 for i = n.

The induced map on cohomology with coefficients

f ∗ : H i(∗;M)→ H i(Sn;M)

is indeed an isomorphism for i < n and the injection 0 ↪→M for i = n.

7



3 Hurewicz morphism

Let n ≥ 1 and recall the homology group Hn(Sn) ' Z. There is no canonical choice of
generator (between the two choices), so we will fix generators once and for all. More precisely,
pick a generator u1 ∈ H1(S1) and pick the remaining generators un ∈ Hn(Sn) so that via the
suspension isomorphism

Hn+1(Sn+1) ∼= Hn(Sn)

un+1 corresponds to un, for all n ≥ 1.

Remark 3.1. One can (and should) start with n = 0, but then one must use reduced homology

throughout, so that the condition H̃n(Sn) ∼= Z also holds when n = 0. Moreover, the suspension

isomorphism for reduced homology H̃n(X) ∼= H̃n+1(ΣX) holds for all n ≥ −1, whereas the

suspension isomorphism for unreduced homology H̃n(X) ∼= H̃n+1(SX) only holds for n ≥ 1.

Definition 3.2. Let n ≥ 1 and let α : Sn → X be any map. Consider the induced map on
integral homology

Z ' Hn(Sn)
Hn(α)−−−→ Hn(X)

and define h(α) := Hn(α)(un) ∈ Hn(X), the “image of 1” under that map. Since homology is
a homotopy functor, this assignment is a well-defined function

h : πn(X)→ Hn(X)

called the Hurewicz morphism.

Proposition 3.3. The Hurewicz map is a group homomorphism.

Proof. Let α, β : Sn → X be two maps. Their sum in πn(X) (where “sum” might be non-
commutative when n = 1) is represented by the composite

Sn
p
// Sn ∨ Sn

α∨β
// X ∨X

∇
// X

where p : Sn → Sn ∨Sn is the usual pinch map, and ∇ : X ∨X → X is the fold map. Applying
homology and using the natural isomorphism H̃∗(X ∨ Y ) ∼= H̃∗(X) ⊕ H̃∗(Y ), we obtain the
commutative diagram

Hn(Sn)

∆ ''

p∗
// Hn(Sn ∨ Sn)

(α∨β)∗
// Hn(X ∨X)

∇∗
// Hn(X)

Hn(Sn)⊕Hn(Sn)

∼=

OO

α∗⊕β∗
// Hn(X)⊕Hn(X).

∼=

OO

∇

77

The image of the generator un ∈ Hn(Sn) along the top composite is h(α + β) and along the
bottom composite is h(α) + h(β).
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Proposition 3.4. The Hurewicz morphism is natural, and compatible with the suspension map,
in the sense that the diagram

πn(X)

Σ
��

h
// Hn(X)

Σ∼=
��

πn+1(ΣX)
h

// Hn+1(ΣX)

commutes.

Proof. Naturality. This follows from functoriality of homology. Let f : X → Y be a map. We
want to show that the diagram

πn(X)

πn(f)
��

h
// Hn(X)

Hn(f)
��

πn(Y )
h

// Hn(Y )

commutes. Given α ∈ πn(X) represented by a map α : Sn → X we have:

h (πn(f)(α)) = h(fα)

= Hn(fα)(un)

= Hn(f)Hn(α)(un)

= Hn(f) (h(α)) .

Suspension. This follows from naturality of the suspension map on homology, i.e. commuta-
tivity of the diagram

Hn(W )

Σ
��

Hn(g)

// Hn(X)

Σ
��

Hn+1(ΣW )
Hn+1(Σg)

// Hn+1(ΣX)

for any map g : W → X.
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Given α ∈ πn(X) represented by a map α : Sn → X we have:

h (Σ(α)) = h(Σα)

= Hn+1(Σα)(un+1)

= Hn+1(Σα)(Σun) by our convention on generators un

= ΣHn(α)(un)

= Σ (h(α)) .
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4 Hurewicz theorem

First we treat the case n = 1 separately.

Lemma 4.1. For any wedge of circles, the Hurewicz morphism

h : π1(
∨
j∈J

S1)→ H1(
∨
j∈J

S1)

is the abelianization morphism.

Proof. By 1.4, the left-hand side is the free group generated by summand inclusions ιj : S1 ↪→∨
j∈J S

1. The Hurewicz map sends those to classes

h(ιj) = ιj∗(u1) ∈ H1(
∨
j∈J

S1) ∼=
⊕
j∈J

H1(S1).

These classes form a basis of the right-hand side as a free abelian group. This explicit description
exhibits h as the abelianization.

Theorem 4.2. Let X be a path-connected space. Then the Hurewicz morphism for n = 1

h : π1(X)→ H1(X)

is the abelianization morphism.

Proof. See Hatcher § 2.A Theorem 2A.1 or May § 15.1.

Lemma 4.3. Let n ≥ 2. For any wedge of n-spheres, the Hurewicz morphism

h : πn(
∨
j∈J

Sn)→ Hn(
∨
j∈J

Sn)

is an isomorphism.

Proof. First, note that the statement holds for a single sphere. For α ∈ πn(Sn), its Hurewicz
image is

h(α) = Hn(α)(un) = deg(α)un ∈ Hn(Sn).

Hence, up to the choice of generator Hn(Sn) ' Z, the Hurewicz map is the degree map

Z

'
��

πn(Sn)

deg

'

99

h

// Hn(Sn)

which we know is an isomorphism, by 1.1.
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Now consider an arbitrary wedge of n-spheres. By 1.4, the left-hand side is the free abelian
group generated by summand inclusions ιj : Sn ↪→

∨
j∈J S

n. The Hurewicz map sends those to
classes

h(ιj) = ιj∗(un) ∈ Hn(
∨
j∈J

Sn) ∼=
⊕
j∈J

Hn(Sn).

These classes form a basis of the right-hand side as a free abelian group.

Theorem 4.4. Let X be an (n − 1)-connected space for some n ≥ 2. Then the Hurewicz
morphism

h : πn(X)→ Hn(X)

is an isomorphism.

Proof. By 2.1, we may replace X by a weakly equivalent space. By CW-approximation, we
may assume X is a CW-complex with a single 0-cell and cells in dimension at least n. Since
both πn(X) and Hn(X) are determined by the (n + 1)-skeleton Xn+1, we may assume X is
(n + 1)-dimensional. The n-skeleton Xn =

∨
j S

n is a wedge of n-sphere, and therefore X is
obtained as the cofiber ∨

i S
n

ϕ
//
∨
j S

n
g
// X

of a map ϕ : A → B between wedges of n-spheres. (Here we used the fact that for well-
pointed spaces, an unpointed cofiber is equivalent to a pointed cofiber. We may assume that
all attaching maps in the CW-structure are pointed.)

Applying homology to the cofiber sequence A→ B → X yields an exact sequence

Hn(A) // Hn(B) // Hn(X) // Hn−1(A) = 0

where we used Hn−1(A) = Hn−1(
∨
i S

n) ∼=
⊕

iHn−1(Sn) = 0.

Now g : B → X is the inclusion of the n-skeleton, and therefore an n-connected map, so that
πn(B)� πn(X) is surjective. In other words, the sequence

πn(B)� πn(X)→ 0

is exact.

Consider the homotopy pushout square

A

��

ϕ
// B

g
��

∗ // X
p
ho

where A → ∗ is n-connected and the attaching map ϕ : A → B is (n − 1)-connected. By
Blakers-Massey homotopy excision, the square is n+ (n− 1)− 1 = 2n− 2 Cartesian. Therefore
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the map induced on the vertical homotopy fibers A→ F (g) is (2n−2)-connected. In particular,
since n ≥ 2, we have n ≤ n+ (n− 2) = 2n− 2 and so the induced map

πn(A)� πn(F (g))

is surjective. Therefore applying πn to the cofiber sequence A→ B → X yields the sequence

πn(F (g))

ψ∗
��

πn(A)

:: ::

ϕ∗

// πn(B)
g∗

// πn(X)

which is exact at πn(B), because of the equality

imϕ∗ = imψ∗ = ker g∗.

Putting these facts together, applying the Hurewicz morphism to the cofiber sequence A →
B → X yields a commutative diagram

πn(A)

h
��

// πn(B)

h
��

// πn(X)

h
��

// 0

Hn(A) // Hn(B) // Hn(X) // 0

where both rows are exact.

By 4.3, the first two downward maps h : πn(A)
∼=−→ Hn(A) and h : πn(B)

∼=−→ Hn(B) are isomor-

phisms. By the 5-lemma, the last map h : πn(X)
∼=−→ Hn(X) is also an isomorphism.

Remark 4.5. Proposition 1.1 can be recovered as an easy special case. Since the sphere Sn is

(n− 1)-connected, the Hurewicz map πn(Sn)
∼=−→ Hn(Sn) ' Z is an isomorphism.

Corollary 4.6. Let X be an (n−1)-connected space for some n ≥ 2. Then the integral homology
of X satisfies Hk(X) = 0 for k < n and Hn(X) ∼= πn(X).

Proof. Apply the Hurewicz theorem successively in dimensions 1, 2, . . . , n.

In other words, for simply-connected spaces, the bottom non-trivial homotopy group coincides
with the bottom non-trivial homology group.
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5 Relative version

There is a similarly defined relative Hurewicz morphism

h : πn(X,A)→ Hn(X,A)

for n ≥ 2, using the fact Hn(Dn, ∂Dn) ∼= H̃n(Dn/∂Dn) ' Z.

Proposition 5.1. The relative Hurewicz morphism is natural, and is a group homomorphism.
Moreover, it is compatible with the long exact sequences in homotopy and homology of a pair
(X,A).

Theorem 5.2. Let (X,A) be an (n − 1)-connected pair for some n ≥ 2, where A is path-
connected (and therefore so is X). Assume moreover that A is simply-connected (and therefore

so is X). Then we have Hi(X,A) = 0 for i < n and the Hurewicz map h : πn(X,A)
∼=−→ Hn(X,A)

is an isomorphism.

One can weaken the connectivity assumptions on A and X, but then the correct statement
becomes more subtle.

Theorem 5.3. Let (X,A) be an (n − 1)-connected pair for some n ≥ 2, where A is path-
connected (and therefore so is X). Then the Hurewicz map h : πn(X,A) → Hn(X,A) is the
map factoring out the action of π1(A). More precisely, the quotient by the normal subgroup
generated by all elements α− γ · α, for γ ∈ π1(A) and α ∈ πn(X,A).

In particular, if πn(X,A) vanishes, then so does Hn(X,A).

Proof. See tom Dieck § 20.1, in particular Theorem 20.1.11.

Remark 5.4. Proposition 2.1 can be recovered using this theorem. The assumption was that the
relative homotopy groups πi(Y,X) vanish for i ≤ n. In the case n ≥ 2, the relative Hurewicz
theorem 5.3 implies that the relative homology groups Hi(Y,X) also vanish for i ≤ n.

To treat the case n = 1, use the functorial descriptionH1(X) ∼= π1(X)ab. The map π1(f) : π1(X)�
π1(Y ) being surjective guarantees that H1(f) : H1(X) → H1(Y ) is also surjective, from which
we conclude H1(Y,X) = 0.
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6 Homology Whitehead theorem

Consider a map f : X → Y . In this section it will be useful to keep the commutative diagram

. . . // π2(X)

��

// π2(Y )

��

// π2(Y,X)

��

// π1(X)

��

// π1(Y )

��

// π1(Y,X)

��

// π0(X)

��

. . . // H2(X) // H2(Y ) // H2(Y,X) // H1(X) // H1(Y ) // H1(Y,X) // H0(X)

in mind, though we will not explicitly refer to it.

Recall from 2.1 that a weak homotopy equivalence induces isomorphisms on homology and
cohomology with any (trivial) coefficients. More is true.

Proposition 6.1. A weak homotopy equivalence induces isomorphisms on homology and coho-
mology with any local coefficients.

Proof. This can be proved by passing to universal covers, and using the fact H∗(X̃;Z) ∼=
H∗(X;Zπ1(X)) (Hatcher § 3.H Example 3H.2 or [1, Exercise 73]) along with an appropriate
analogue of the universal coefficient theorem.

Proposition 6.2. Let X and Y be simply-connected spaces and f : X → Y a map which induces
an isomorphism on integral homology f∗ : H∗(X;Z)

'−→ H∗(Y ;Z). Then f is a weak homotopy
equivalence.

Proof. We know X and Y are path-connected. Since Y is moreover simply-connected, we have
π1(Y,X) = 0 so that the pair (Y,X) is 1-connected. By the relative Hurewicz theorem, we have
the isomorphism

π2(Y,X)
∼=−→ H2(Y,X) = 0

where the relative homology group vanishes since f induces isomorphisms on integral homology.
Thus the pair (Y,X) is 2-connected. Repeating this argument inductively, we conclude that
all relative homotopy groups πi(Y,X) vanish for i ≥ 1, so that f : X

∼−→ Y is a weak homotopy
equivalence.

Proposition 6.3. Let f : X → Y be a map inducing an equivalence of fundamental groupoids
Π1 and an isomorphism on homology with any local coefficients. Then f is a weak homotopy
equivalence.

Proof. WLOG X and Y are path-connected. Then the condition on fundamental groupoids
means that f induces an isomorphism on π1.

By CW-approximation, we may assume that X and Y are CW-complexes. Indeed, consider
the commutative diagram

ΓX

γX ∼
��

Γf
// ΓY

γY∼
��

X
f

// Y
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where Γ is a functorial CW-approximation. By 2-out-of-3, Γf is a weak homotopy equivalence
if and only if f is. By 6.1, both γX and γY induce isomorphisms on π1 and homology with local
coefficients. But the class of all such maps also satisfies 2-out-of-3.

All we want here is that X and Y are locally contractible, and in particular locally path-
connected and semi-locally simply-connected, and thus admit universal covers. Let pX : X̃ → X
and pY : Ỹ → Y denote the universal covers of X and Y respectively. Consider the commutative
diagram

X̃

pX
��

f̃
// Ỹ

pY
��

X
f

// Y

where f̃ : X̃ → Ỹ trivially induces an isomorphism on π1. Using the isomorphisms

H∗(X̃;Z) ∼= H∗(X;Zπ1(X))

H∗(Ỹ ;Z) ∼= H∗(Y ;Zπ1(Y ))

we deduce that f̃ induces an isomorphism on integral homology. Indeed, by assumption f
induces an isomorphism on homology with local coefficients

f∗ : H∗(X; f ∗Zπ1(Y ))
'−→ H∗(Y ;Zπ1(Y ))

and since f also induces an isomorphism on π1, we have the isomorphism

H∗(X; f ∗Zπ1(Y )) ' H∗(X;Zπ1(X)).

By 6.2, it follows that f̃ : X̃
∼−→ Ỹ is a weak homotopy equivalence. Since both covering maps

pX : X̃ → X and pY : Ỹ → Y induce isomorphisms on higher homotopy groups πi for i ≥ 2,
then so does f : X → Y . Therefore f is a weak homotopy equivalence.

Warning 6.4. It is NOT true in general that a map f : X → Y which induces isomorphisms on
π1 and on integral homology H∗(−;Z) is a weak homotopy equivalence. Not even if f induces
isomorphisms on an enormous range of lowest homotopy groups. Not even if f is a nice map,
e.g. the inclusion of a subcomplex into a finite CW-complex. See for example Homework 10
Problem 1.

That said, there are sufficient conditions to guarantee this kind of conclusion, which will in fact
generalize 6.2.

Definition 6.5. A space X is simple if for any choice of basepoint x ∈ X, the fundamental
group π1(X, x) acts trivially on all homotopy groups πn(X, x) for n ≥ 1. (In particular, the
fundamental group at any basepoint must be abelian.)

Proposition 6.6. Let X and Y be simple spaces and f : X → Y a map inducing an isomor-
phism on integral homology f∗ : H∗(X;Z)

'−→ H∗(Y ;Z). Then f is a weak homotopy equivalence.
(Note that f automatically induces an isomorphism on π1

∼= H1 in this case, since all funda-
mental groups involved are abelian.)
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Proof. See [2, Theorem 6#] and the discussion afterwards. Here is a sketch of the proof.

By the universal coefficient theorem, f induces an isomorphism on homology and cohomology
with any trivial coefficients f ∗ : H∗(Y ;M)

'−→ H∗(X;M). Recall that (reduced) cohomology is
represented by Eilenberg-MacLane spaces

H̃n(X;M) ∼= [ΓX,K(M,n)]∗

for spaces with the homotopy type of a CW-complex (and we need CW-approximation Γ for
arbitrary spaces).

Since X and Y are simple, they admit simple Postnikov towers. By an inductive argument,
one can show that f induces a bijection on derived homotopy classes of maps

f ∗ : [ΓY, Z]
'−→ [ΓX,Z]

whenever Z is an (appropriate) tower built out of Eilenberg-MacLane spaces. This applies in
particular to Z = X and Z = Y , from which we deduce that f : X → Y is an isomorphism in
the weak homotopy category wHo(Top), i.e. a weak homotopy equivalence.

Combining these propositions with the Whitehead theorem, we obtain the so-called homology
Whitehead theorems.

Corollary 6.7. Let f : X → Y be a map between CW-complexes. In each of the following
cases, it follows that f is a homotopy equivalence.

1. f induces an equivalence on fundamental groupoids and an isomorphism on homology with
any local coefficients.

2. X and Y are simple, and f induces an isomorphism on integral homology.

3. (Particular case.) X and Y are simply-connected, and f induces an isomorphism on
integral homology.

Remark 6.8. By the usual 2-out-of-3 argument (c.f. Homework 7 Problem 1a), the statement
holds more generally when X and Y have the homotopy type of CW-complexes, instead of being
CW-complexes.
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7 Other applications

Proposition 7.1. Every simply-connected closed 3-manifold is homotopy equivalent to a sphere
S3.

Proof. Let X be a a simply-connected closed 3-manifold. We will first check that X is a
homology sphere.

Since X is path-connected, we have H0(X;Z) ∼= Z. Since X is moreover simply-connected,
we have H1(X;Z) ∼= π1(X)ab = 0. Also, since X is simply-connected, it is orientable, and we
have H3(X;Z) ∼= Z. By Poincaré duality, we have H2(X;Z) ∼= H1(X;Z). By the universal
coefficient theorem for cohomology, we have a short exact sequence

0→ Ext1
Z(H0(X;Z),Z)→ H1(X;Z)→ HomZ(H1(X;Z),Z)→ 0

which yields H1(X;Z) = 0 since H0(X;Z) ∼= Z is a projective Z-module and H1(X;Z) = 0.

By the Hurewicz theorem, the Hurewicz map h : π3(X)
∼=−→ H3(X;Z) ' Z is an isomorphism.

Pick a generator α ∈ π3(X) ' Z and represent it by a map α : S3 → X. Then α induces

isomorphisms on integral homology α∗ : H∗(S
3;Z)

'−→ H∗(X;Z). Since S3 and X are simply-

connected and have the homotopy type of CW-complexes, the map α : S3 '−→ X is a homotopy
equivalence.

The argument above proves the following.

Proposition 7.2. Let X be a simply-connected closed n-manifold, for some n ≥ 2. If X is a
homology sphere (i.e. its integral homology is isomorphic to that of Sn), then X is homotopy
equivalent to a sphere Sn.

Remark 7.3. The assumption that X is simply-connected cannot be dropped in general. There
are homology spheres which are not simply-connected, and thus not homotopy equivalent to
Sn. See for example the Poincaré homology sphere of dimension 3, described here:

http://www.map.mpim-bonn.mpg.de/Poincar%C3%A9%E2%80%99s_homology_sphere
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