Math 527 - Homotopy Theory Hurewicz theorem

Martin Frankland

March 25, 2013

1 Background material

Proposition 1.1. For all $n \ge 1$, we have $\pi_n(S^n) \cong \mathbb{Z}$, generated by the class of the identity map id: $S^n \to S^n$.

Proof. The long exact sequence in homotopy of the Hopf fibration $S^1 \to S^3 \xrightarrow{\eta} S^2$ yields the isomorphism $\pi_2(S^2) \xrightarrow{\cong} \pi_1(S^1)$. The Freudenthal suspension theorem guarantees that $\pi_2(S^2)$ is already stable, so that we have isomorphisms

$$\pi_2(S^2) \xrightarrow{\Sigma} \pi_3(S^3) \xrightarrow{\Sigma} \pi_4(S^4) \xrightarrow{\Sigma} \dots$$

Moreover, the suspension map

$$\mathbb{Z} \cong \pi_1(S^1) \xrightarrow{\Sigma} \pi_2(S^2) \cong \mathbb{Z}$$

is surjective, and thus an isomorphism. To conclude, note that class $[id_{S^1}] \in \pi_1(S^1)$ is a generator, and the suspension map sends the identity to the identity:

$$\Sigma([\mathrm{id}_{S^{n-1}}]) = [\mathrm{id}_{S^n}] \in \pi_n(S^n).$$

Alternate proof. Using a bit of differential topology (or a more geometric construction along the lines of Hatcher § 4.1 Exercise 15), consider the degree of a smooth map $f: S^n \to S^n$. Since every homotopy class [f] contains a smooth representative, and all such maps have the same degree (i.e. degree is a homotopy invariant), this defines a function

deg:
$$\pi_n(S^n) \to \mathbb{Z}$$
.

One readily shows that deg is a group homomorphism. One can show moreover that two maps $S^n \to S^n$ with the same degree are homotopic, i.e. deg is injective. The equality deg([id]) = 1 shows that deg is surjective, hence an isomorphism.

Remark 1.2. One can show that the definition of degree in differential topology coincides with the following homological definition. The degree of a map $f: S^n \to S^n$ is the (well-defined) integer such that the map induced on homology

$$f_* \colon H_n(S^n) \to H_n(S^n)$$

is multiplication by deg(f), noting the fact $H_n(S^n) \simeq \mathbb{Z}$. In other words, if $u \in H_n(S^n)$ is a generator, then we have $f_*(u) = \deg(f)u \in H_n(S^n)$.

Lemma 1.3. For $n \geq 2$, we have

$$\pi_n(S^n \vee S^n) \cong \mathbb{Z} \oplus \mathbb{Z},$$

the free abelian group generated by the two summand inclusions $\iota_j \colon S^n \hookrightarrow S^n \lor S^n$ (with j = 1, 2). For n = 1, we have

$$\pi_1(S^1 \lor S^1) \cong \mathbb{Z} * \mathbb{Z},$$

the free group generated by the two summand inclusions $\iota_i \colon S^1 \hookrightarrow S^1 \lor S^1$.

Proof. The case n = 1 follows from the Van Kampen theorem. Now assume $n \ge 2$.

Since S^n is (n-1)-connected, the inclusion $S^n \vee S^n \to S^n \times S^n$ is n+n-1 = 2n-1 connected, and in particular an isomorphism on π_k for $k \leq 2n-2 = n+(n-2)$. We obtain the isomorphism

$$\pi_n(S^n \vee S^n) \cong \pi_n(S^n \times S^n)$$
$$\cong \pi_n(S^n) \times \pi_n(S^n)$$
$$\cong \pi_n(S^n) \oplus \pi_n(S^n)$$
$$\cong \mathbb{Z} \oplus \mathbb{Z},$$

The generators $[\mathrm{id}_j] \in \pi_n(S^n)$ on the right-hand side correspond to summand inclusions $\iota_j \colon S^n \hookrightarrow S^n \vee S^n$ on the left-hand side.

Proposition 1.4. Let J be a set. For $n \ge 2$, we have

$$\pi_n(\bigvee_{j\in J}S^n)\cong\bigoplus_{j\in J}\mathbb{Z},$$

the free abelian group generated by the summand inclusions $\iota_j \colon S^n \hookrightarrow \bigvee_{j \in J} S^n$. For n = 1, we have

$$\pi_1(\bigvee_{j\in J}S^1)\cong *_{j\in J}\mathbb{Z},$$

the free group generated by the summand inclusions $\iota_j \colon S^1 \hookrightarrow \bigvee_{i \in J} S^1$.

Proof. The case where J is finite follows by applying the same argument as in 1.3 inductively. For an arbitrary set J, note that a compact subspace of $\bigvee_{j \in J} S^n$ lives in a finite subwedge $\bigvee_{j \in J_{\alpha}} S^n$, for some finite subset $J_{\alpha} \subseteq J$. Therefore we obtain a (filtered) colimit

$$\pi_n(\bigvee_{j\in J} S^n) \cong \operatorname{colim}_{\alpha} \pi_n(\bigvee_{j\in J_{\alpha}} S^n)$$

where J_{α} runs over all finite subsets of J (c.f. Homework 6 Problem 3). Said colimit is as claimed in the statement: free abelian group when $n \ge 2$ and free group when n = 1. \Box

2 Weak equivalence implies homology isomorphism

Proposition 2.1. Let $f: X \to Y$ be an n-connected map for some $n \ge 0$. Then f induces an isomorphism on integral homology $f_*: H_i(X; \mathbb{Z}) \to H_i(Y; \mathbb{Z})$ for i < n and a surjection when i = n.

In particuliar, any weak homotopy equivalence induces an isomorphism on integral homology $H_*(X;\mathbb{Z}) \xrightarrow{\simeq} H_*(Y;\mathbb{Z})$ (and thus on homology and cohomology with any coefficients, by the universal coefficient theorem).

Direct proof. The case n = 0 is clear, since $H_0(X)$ is the free abelian group on $\pi_0(X)$. Now we assume $n \ge 1$.

WLOG X and Y are path-connected. To prove this, note that the natural transformation $\coprod_{C \in \pi_0(X)} C \to X$ is a weak homotopy equivalence and induces an isomorphism on homology.

WLOG f is an embedding, replacing Y by the mapping cylinder M(f) if needed.

By the long exact sequence in homotopy groups of the pair (Y, X), the fact that $f: X \to Y$ is *n*-connected is equivalent to the vanishing of relative homotopy groups $\pi_k(Y, X) = 0$ for $k \leq n$.

By the long exact sequence in homology groups of the pair (Y, X), the desired conclusion on f is equivalent to the vanishing of relative homology groups $H_k(Y, X) = 0$ for $k \leq n$.

Let $\alpha \in H_k(Y, X)$. Then by gluing k-simplices appropriately, one can realize α as coming from a k-dimensional CW-complex K, with a (k-1)-dimensional subcomplex $L \subset K$ (realizing the boundary) which is sent to X. See Hatcher Proposition 4.21 for details. In other words, there is a map

$$\sigma \colon (K,L) \to (Y,X)$$

and a class $\overline{\alpha} \in H_k(K, L)$ satisfying $\sigma_*(\overline{\alpha}) = \alpha \in H_k(Y, X)$. The condition $\pi_k(Y, X) = 0$ along with the compression lemma guarantees that σ is homotopic rel L to a map $\sigma' \colon K \to Y$ landing entirely in X. Thus $\sigma_* = \sigma'_* \colon H_k(K, L) \to H_k(Y, X)$ is zero, as it factors through $H_k(X, X) = 0$.

Using CW-approximation. We first show that CW-approximation induces an isomorphism on homology. Let $\operatorname{Sing}(X)$ denote the singular set of X (which is a simplicial set) and $|\operatorname{Sing}(X)|$ its geometric realization. One can show that the natural map $\epsilon \colon |\operatorname{Sing}(X)| \to X$ is a weak homotopy equivalence. Moreover, $|\operatorname{Sing}(X)|$ admits a CW-structure with a k-cell for each ksimplex in $\operatorname{Sing}(X)$, in which the cellular chain complex of $|\operatorname{Sing}(X)|$ is the chain complex corresponding to the simplicial abelian group obtained by taking the levelwise free abelian group on $\operatorname{Sing}(X)$ – none other than the singular chain complex of X. Thus $|\operatorname{Sing}(X)|$ and X have the same integral homology, and in fact ϵ induces an isomorphism on integral homology.

This shows that the CW-approximation $\epsilon \colon |Sing(X)| \to X$ induces an isomorphism on homology. But by homotopy uniqueness of CW-approximation, the same conclusion holds for any CW-approximation.

Therefore, we may assume that X and Y are CW-complexes. Indeed, consider the commutative

diagram

where Γ is a functorial CW-approximation. Then f is *n*-connected if and only Γf is. Since γ_X and γ_Y induce isomorphisms on integral homology, the conclusion about f holds if and only if it holds for Γf .

By the (strong form of the) Whitehead theorem, the induced map

 $f_* \colon [W, X] \to [W, Y]$

is surjective for any CW-complex W of dimension $d \leq n$ and a bijection for d < n. Taking $W = Y_n$ the *n*-skeleton of Y, the map

$$f_* \colon [Y_n, X] \to [Y_n, Y]$$

is surjective, so that there is a map $g: Y_n \to X$ satisfying $[fg] = [\iota_n]: Y_n \to Y$, i.e. making the diagram

commute up to homotopy, where $\iota_n \colon Y_n \hookrightarrow Y$ is the skeletal inclusion. By cellular homology, $\iota_n \colon Y_n \hookrightarrow Y$ is surjective on homomology H_k for $k \leq n$, and thus so is f.

It remains to prove injectivity on homology H_k for k < n. Let $\alpha \in H_k(X)$ be in the kernel of $f_* \colon H_k(X) \to H_k(Y)$, with k < n. Since the skeletal inclusion $\iota_{n-1} \colon X_{n-1} \to X$ is surjective on homology H_k , there is a class $\overline{\alpha} \in H_k(X_{n-1})$ satisfying $\iota_{n-1*}(\overline{\alpha}) = \alpha \in H_k(X)$. By cellular approximation, $f \colon X \to Y$ may be assumed cellular, so that its restriction $f|_{X_{n-1}}$ factors through Y_{n-1} (and in particular through Y_n), making the square in the diagram

commute. Now up to homotopy, we have equality of maps $X_{n-1} \to Y$

$$fgf|_{X_{n-1}} = \iota_n f|_{X_{n-1}}$$
$$= f\iota_{n-1}$$

but recall that the map

$$f_*\colon [X_{n-1}, X] \to [X_{n-1}, Y]$$

is injective, which implies the equality $gf|_{X_{n-1}} = \iota_{n-1}$ up to homotopy. In homology we obtain

$$\alpha = \iota_{n-1*}(\overline{\alpha})$$
$$= g_* f|_{X_{n-1}*}(\overline{\alpha})$$
$$= g_*(0)$$
$$= 0.$$

Indeed, the class $f|_{X_{n-1}*}(\overline{\alpha})$ satisfies

$$\begin{aligned}
\nu_{n*}f|_{X_{n-1}*}(\overline{\alpha}) &= f_*\iota_{n-1*}(\overline{\alpha}) \\
&= f_*(\alpha) \\
&= 0
\end{aligned}$$

but again by cellular homology, $\iota_{n*} \colon H_k(Y_n) \to H_k(Y)$ is injective for k < n.

Remark 2.2. If all we care about is the special case $n = \infty$, then no need to play around with skeletal inclusions. By Whitehead, a weak homotopy equivalence between CW-complexes is a homotopy equivalence, and therefore induces an isomorphism on homology.

Corollary 2.3. Let $f: X \to Y$ be an n-connected map for some $n \ge 0$, and let M be an abelian group. Then the following holds.

1. The induced map on homology with coefficients in M

$$f_* \colon H_i(X; M) \to H_i(Y; M)$$

is an isomorphism for i < n and a surjection when i = n.

2. The induced map on cohomology with coefficients in M

$$f^* \colon H^i(Y; M) \to H^i(X; M)$$

is an isomorphism for i < n and an injection when i = n.

Proof. 1. The universal coefficient theorem for homology provides a map of short exact sequences

where the two outer downward maps are isomorphisms when i < n, and hence so is the middle downward map $H_i(X; M) \xrightarrow{\simeq} H_i(Y; M)$.

In the case i = n, the left downward arrow is surjective, while the right downward arrow is an isomorphism. Therefore the middle downward map $H_i(X; M) \to H_i(Y; M)$ is surjective.

2. The universal coefficient theorem for cohomology provides a map of short exact sequences

where the two outer downward maps are isomorphisms when i < n, and hence so is the middle downward map $H^i(Y; M) \xrightarrow{\simeq} H^i(X; M)$.

In the case i = n, the left downward arrow is an isomorphism, while the right downward arrow is injective. Therefore the middle downward map $H^i(Y; M) \hookrightarrow H^i(X; M)$ is injective. \Box

Example 2.4. The map $S^n \to *$ is n-connected. The induced map on homology with coefficients

$$f_* \colon H_i(S^n; M) \to H_i(*; M)$$

is indeed an isomorphism for i < n, and the surjection $M \rightarrow 0$ for i = n.

The induced map on cohomology with coefficients

$$f^* \colon H^i(*; M) \to H^i(S^n; M)$$

is indeed an isomorphism for i < n and the injection $0 \hookrightarrow M$ for i = n.

3 Hurewicz morphism

Let $n \geq 1$ and recall the homology group $H_n(S^n) \simeq \mathbb{Z}$. There is no canonical choice of generator (between the two choices), so we will fix generators once and for all. More precisely, pick a generator $u_1 \in H_1(S^1)$ and pick the remaining generators $u_n \in H_n(S^n)$ so that via the suspension isomorphism

$$H_{n+1}(S^{n+1}) \cong H_n(S^n)$$

 u_{n+1} corresponds to u_n , for all $n \ge 1$.

Remark 3.1. One can (and should) start with n = 0, but then one must use reduced homology throughout, so that the condition $\widetilde{H}_n(S^n) \cong \mathbb{Z}$ also holds when n = 0. Moreover, the suspension isomorphism for reduced homology $\widetilde{H}_n(X) \cong \widetilde{H}_{n+1}(\Sigma X)$ holds for all $n \ge -1$, whereas the suspension isomorphism for unreduced homology $\widetilde{H}_n(X) \cong \widetilde{H}_{n+1}(SX)$ only holds for $n \ge 1$.

Definition 3.2. Let $n \ge 1$ and let $\alpha \colon S^n \to X$ be any map. Consider the induced map on integral homology

$$\mathbb{Z} \simeq H_n(S^n) \xrightarrow{H_n(\alpha)} H_n(X)$$

and define $h(\alpha) := H_n(\alpha)(u_n) \in H_n(X)$, the "image of 1" under that map. Since homology is a homotopy functor, this assignment is a well-defined function

$$h: \pi_n(X) \to H_n(X)$$

called the **Hurewicz morphism**.

Proposition 3.3. The Hurewicz map is a group homomorphism.

Proof. Let $\alpha, \beta \colon S^n \to X$ be two maps. Their sum in $\pi_n(X)$ (where "sum" might be noncommutative when n = 1) is represented by the composite

$$S^n \xrightarrow{p} S^n \lor S^n \xrightarrow{\alpha \lor \beta} X \lor X \xrightarrow{\nabla} X$$

where $p: S^n \to S^n \vee S^n$ is the usual pinch map, and $\nabla: X \vee X \to X$ is the fold map. Applying homology and using the natural isomorphism $\widetilde{H}_*(X \vee Y) \cong \widetilde{H}_*(X) \oplus \widetilde{H}_*(Y)$, we obtain the commutative diagram

The image of the generator $u_n \in H_n(S^n)$ along the top composite is $h(\alpha + \beta)$ and along the bottom composite is $h(\alpha) + h(\beta)$.

Proposition 3.4. The Hurewicz morphism is natural, and compatible with the suspension map, in the sense that the diagram

$$\pi_n(X) \xrightarrow{h} H_n(X)$$

$$\Sigma \downarrow \qquad \cong \downarrow \Sigma$$

$$\pi_{n+1}(\Sigma X) \xrightarrow{h} H_{n+1}(\Sigma X)$$

commutes.

Proof. Naturality. This follows from functoriality of homology. Let $f: X \to Y$ be a map. We want to show that the diagram

$$\pi_n(X) \xrightarrow{h} H_n(X)$$

$$\pi_n(f) \downarrow \qquad \qquad \downarrow H_n(f)$$

$$\pi_n(Y) \xrightarrow{h} H_n(Y)$$

commutes. Given $\alpha \in \pi_n(X)$ represented by a map $\alpha \colon S^n \to X$ we have:

$$h(\pi_n(f)(\alpha)) = h(f\alpha)$$

= $H_n(f\alpha)(u_n)$
= $H_n(f)H_n(\alpha)(u_n)$
= $H_n(f)(h(\alpha))$.

Suspension. This follows from naturality of the suspension map on homology, i.e. commutativity of the diagram

$$H_n(W) \xrightarrow{H_n(g)} H_n(X)$$

$$\Sigma \downarrow \qquad \qquad \downarrow \Sigma$$

$$H_{n+1}(\Sigma W) \xrightarrow{H_{n+1}(\Sigma g)} H_{n+1}(\Sigma X)$$

for any map $g \colon W \to X$.

Given $\alpha \in \pi_n(X)$ represented by a map $\alpha \colon S^n \to X$ we have:

$$h(\Sigma(\alpha)) = h(\Sigma\alpha)$$

= $H_{n+1}(\Sigma\alpha)(u_{n+1})$
= $H_{n+1}(\Sigma\alpha)(\Sigma u_n)$ by our convention on generators u_n
= $\Sigma H_n(\alpha)(u_n)$
= $\Sigma(h(\alpha))$.

	-	-	-	
L				

4 Hurewicz theorem

First we treat the case n = 1 separately.

Lemma 4.1. For any wedge of circles, the Hurewicz morphism

$$h \colon \pi_1(\bigvee_{j \in J} S^1) \to H_1(\bigvee_{j \in J} S^1)$$

is the abelianization morphism.

Proof. By 1.4, the left-hand side is the free group generated by summand inclusions $\iota_j \colon S^1 \hookrightarrow \bigvee_{j \in J} S^1$. The Hurewicz map sends those to classes

$$h(\iota_j) = \iota_{j*}(u_1) \in H_1(\bigvee_{j \in J} S^1) \cong \bigoplus_{j \in J} H_1(S^1).$$

These classes form a basis of the right-hand side as a free abelian group. This explicit description exhibits h as the abelianization.

Theorem 4.2. Let X be a path-connected space. Then the Hurewicz morphism for n = 1

$$h\colon \pi_1(X) \to H_1(X)$$

is the abelianization morphism.

Proof. See Hatcher § 2.A Theorem 2A.1 or May § 15.1.

Lemma 4.3. Let $n \ge 2$. For any wedge of n-spheres, the Hurewicz morphism

$$h: \pi_n(\bigvee_{j\in J} S^n) \to H_n(\bigvee_{j\in J} S^n)$$

is an isomorphism.

Proof. First, note that the statement holds for a single sphere. For $\alpha \in \pi_n(S^n)$, its Hurewicz image is

$$h(\alpha) = H_n(\alpha)(u_n) = \deg(\alpha)u_n \in H_n(S^n).$$

Hence, up to the choice of generator $H_n(S^n) \simeq \mathbb{Z}$, the Hurewicz map is the degree map

which we know is an isomorphism, by 1.1.

Now consider an arbitrary wedge of *n*-spheres. By 1.4, the left-hand side is the free abelian group generated by summand inclusions $\iota_j \colon S^n \hookrightarrow \bigvee_{j \in J} S^n$. The Hurewicz map sends those to classes

$$h(\iota_j) = \iota_{j*}(u_n) \in H_n(\bigvee_{j \in J} S^n) \cong \bigoplus_{j \in J} H_n(S^n).$$

These classes form a basis of the right-hand side as a free abelian group.

Theorem 4.4. Let X be an (n-1)-connected space for some $n \ge 2$. Then the Hurewicz morphism

$$h: \pi_n(X) \to H_n(X)$$

is an isomorphism.

Proof. By 2.1, we may replace X by a weakly equivalent space. By CW-approximation, we may assume X is a CW-complex with a single 0-cell and cells in dimension at least n. Since both $\pi_n(X)$ and $H_n(X)$ are determined by the (n + 1)-skeleton X_{n+1} , we may assume X is (n + 1)-dimensional. The n-skeleton $X_n = \bigvee_j S^n$ is a wedge of n-sphere, and therefore X is obtained as the cofiber

$$\bigvee_i S^n \xrightarrow{\varphi} \bigvee_j S^n \xrightarrow{g} X$$

of a map $\varphi: A \to B$ between wedges of *n*-spheres. (Here we used the fact that for wellpointed spaces, an unpointed cofiber is equivalent to a pointed cofiber. We may assume that all attaching maps in the CW-structure are pointed.)

Applying homology to the cofiber sequence $A \to B \to X$ yields an exact sequence

$$H_n(A) \longrightarrow H_n(B) \longrightarrow H_n(X) \longrightarrow H_{n-1}(A) = 0$$

where we used $H_{n-1}(A) = H_{n-1}(\bigvee_i S^n) \cong \bigoplus_i H_{n-1}(S^n) = 0.$

Now $g: B \to X$ is the inclusion of the *n*-skeleton, and therefore an *n*-connected map, so that $\pi_n(B) \twoheadrightarrow \pi_n(X)$ is surjective. In other words, the sequence

$$\pi_n(B) \twoheadrightarrow \pi_n(X) \to 0$$

is exact.

Consider the homotopy pushout square

$$\begin{array}{ccc} A & \longrightarrow & B \\ & & & & & \\ \downarrow & & & & & \\ \ast & \longrightarrow & X \end{array}$$

where $A \to *$ is *n*-connected and the attaching map $\varphi \colon A \to B$ is (n-1)-connected. By Blakers-Massey homotopy excision, the square is n + (n-1) - 1 = 2n - 2 Cartesian. Therefore

the map induced on the vertical homotopy fibers $A \to F(g)$ is (2n-2)-connected. In particular, since $n \ge 2$, we have $n \le n + (n-2) = 2n-2$ and so the induced map

$$\pi_n(A) \twoheadrightarrow \pi_n(F(g))$$

is surjective. Therefore applying π_n to the cofiber sequence $A \to B \to X$ yields the sequence

$$\pi_n(F(g))$$

$$\downarrow \psi_*$$

$$\pi_n(A) \xrightarrow{\varphi_*} \pi_n(B) \xrightarrow{g_*} \pi_n(X)$$

which is exact at $\pi_n(B)$, because of the equality

$$\operatorname{im} \varphi_* = \operatorname{im} \psi_* = \ker g_*.$$

Putting these facts together, applying the Hurewicz morphism to the cofiber sequence $A \to B \to X$ yields a commutative diagram

$$\pi_n(A) \longrightarrow \pi_n(B) \longrightarrow \pi_n(X) \longrightarrow 0$$

$$h \downarrow \qquad h \downarrow \qquad h \downarrow$$

$$H_n(A) \longrightarrow H_n(B) \longrightarrow H_n(X) \longrightarrow 0$$

where both rows are exact.

By 4.3, the first two downward maps $h: \pi_n(A) \xrightarrow{\cong} H_n(A)$ and $h: \pi_n(B) \xrightarrow{\cong} H_n(B)$ are isomorphisms. By the 5-lemma, the last map $h: \pi_n(X) \xrightarrow{\cong} H_n(X)$ is also an isomorphism. \Box

Remark 4.5. Proposition 1.1 can be recovered as an easy special case. Since the sphere S^n is (n-1)-connected, the Hurewicz map $\pi_n(S^n) \xrightarrow{\cong} H_n(S^n) \simeq \mathbb{Z}$ is an isomorphism.

Corollary 4.6. Let X be an (n-1)-connected space for some $n \ge 2$. Then the integral homology of X satisfies $H_k(X) = 0$ for k < n and $H_n(X) \cong \pi_n(X)$.

Proof. Apply the Hurewicz theorem successively in dimensions $1, 2, \ldots, n$.

In other words, for simply-connected spaces, the bottom non-trivial homotopy group coincides with the bottom non-trivial homology group.

5 Relative version

There is a similarly defined relative Hurewicz morphism

$$h: \pi_n(X, A) \to H_n(X, A)$$

for $n \geq 2$, using the fact $H_n(D^n, \partial D^n) \cong \widetilde{H}_n(D^n/\partial D^n) \simeq \mathbb{Z}$.

Proposition 5.1. The relative Hurewicz morphism is natural, and is a group homomorphism. Moreover, it is compatible with the long exact sequences in homotopy and homology of a pair (X, A).

Theorem 5.2. Let (X, A) be an (n - 1)-connected pair for some $n \ge 2$, where A is pathconnected (and therefore so is X). Assume moreover that A is simply-connected (and therefore so is X). Then we have $H_i(X, A) = 0$ for i < n and the Hurewicz map $h: \pi_n(X, A) \xrightarrow{\cong} H_n(X, A)$ is an isomorphism.

One can weaken the connectivity assumptions on A and X, but then the correct statement becomes more subtle.

Theorem 5.3. Let (X, A) be an (n - 1)-connected pair for some $n \ge 2$, where A is pathconnected (and therefore so is X). Then the Hurewicz map $h: \pi_n(X, A) \to H_n(X, A)$ is the map factoring out the action of $\pi_1(A)$. More precisely, the quotient by the normal subgroup generated by all elements $\alpha - \gamma \cdot \alpha$, for $\gamma \in \pi_1(A)$ and $\alpha \in \pi_n(X, A)$.

In particular, if $\pi_n(X, A)$ vanishes, then so does $H_n(X, A)$.

Proof. See tom Dieck \S 20.1, in particular Theorem 20.1.11.

Remark 5.4. Proposition 2.1 can be recovered using this theorem. The assumption was that the relative homotopy groups $\pi_i(Y, X)$ vanish for $i \leq n$. In the case $n \geq 2$, the relative Hurewicz theorem 5.3 implies that the relative homology groups $H_i(Y, X)$ also vanish for $i \leq n$.

To treat the case n = 1, use the functorial description $H_1(X) \cong \pi_1(X)_{ab}$. The map $\pi_1(f) \colon \pi_1(X) \twoheadrightarrow \pi_1(Y)$ being surjective guarantees that $H_1(f) \colon H_1(X) \to H_1(Y)$ is also surjective, from which we conclude $H_1(Y, X) = 0$.

6 Homology Whitehead theorem

Consider a map $f: X \to Y$. In this section it will be useful to keep the commutative diagram

in mind, though we will not explicitly refer to it.

Recall from 2.1 that a weak homotopy equivalence induces isomorphisms on homology and cohomology with any (trivial) coefficients. More is true.

Proposition 6.1. A weak homotopy equivalence induces isomorphisms on homology and cohomology with any local coefficients.

Proof. This can be proved by passing to universal covers, and using the fact $H_*(\widetilde{X};\mathbb{Z}) \cong H_*(X;\mathbb{Z}\pi_1(X))$ (Hatcher § 3.H Example 3H.2 or [1, Exercise 73]) along with an appropriate analogue of the universal coefficient theorem. \Box

Proposition 6.2. Let X and Y be simply-connected spaces and $f: X \to Y$ a map which induces an isomorphism on integral homology $f_*: H_*(X; \mathbb{Z}) \xrightarrow{\simeq} H_*(Y; \mathbb{Z})$. Then f is a weak homotopy equivalence.

Proof. We know X and Y are path-connected. Since Y is moreover simply-connected, we have $\pi_1(Y, X) = 0$ so that the pair (Y, X) is 1-connected. By the relative Hurewicz theorem, we have the isomorphism

$$\pi_2(Y,X) \xrightarrow{\cong} H_2(Y,X) = 0$$

where the relative homology group vanishes since f induces isomorphisms on integral homology. Thus the pair (Y, X) is 2-connected. Repeating this argument inductively, we conclude that all relative homotopy groups $\pi_i(Y, X)$ vanish for $i \ge 1$, so that $f: X \xrightarrow{\sim} Y$ is a weak homotopy equivalence.

Proposition 6.3. Let $f: X \to Y$ be a map inducing an equivalence of fundamental groupoids Π_1 and an isomorphism on homology with any local coefficients. Then f is a weak homotopy equivalence.

Proof. WLOG X and Y are path-connected. Then the condition on fundamental groupoids means that f induces an isomorphism on π_1 .

By CW-approximation, we may assume that X and Y are CW-complexes. Indeed, consider the commutative diagram

where Γ is a functorial CW-approximation. By 2-out-of-3, Γf is a weak homotopy equivalence if and only if f is. By 6.1, both γ_X and γ_Y induce isomorphisms on π_1 and homology with local coefficients. But the class of all such maps also satisfies 2-out-of-3.

All we want here is that X and Y are locally contractible, and in particular locally pathconnected and semi-locally simply-connected, and thus admit universal covers. Let $p_X \colon \widetilde{X} \to X$ and $p_Y \colon \widetilde{Y} \to Y$ denote the universal covers of X and Y respectively. Consider the commutative diagram

where $\widetilde{f}: \widetilde{X} \to \widetilde{Y}$ trivially induces an isomorphism on π_1 . Using the isomorphisms

$$H_*(\widetilde{X};\mathbb{Z}) \cong H_*(X;\mathbb{Z}\pi_1(X))$$
$$H_*(\widetilde{Y};\mathbb{Z}) \cong H_*(Y;\mathbb{Z}\pi_1(Y))$$

we deduce that \tilde{f} induces an isomorphism on integral homology. Indeed, by assumption f induces an isomorphism on homology with local coefficients

$$f_* \colon H_*(X; f^* \mathbb{Z}\pi_1(Y)) \xrightarrow{\simeq} H_*(Y; \mathbb{Z}\pi_1(Y))$$

and since f also induces an isomorphism on π_1 , we have the isomorphism

$$H_*(X; f^*\mathbb{Z}\pi_1(Y)) \simeq H_*(X; \mathbb{Z}\pi_1(X)).$$

By 6.2, it follows that $\tilde{f}: \tilde{X} \xrightarrow{\sim} \tilde{Y}$ is a weak homotopy equivalence. Since both covering maps $p_X: \tilde{X} \to X$ and $p_Y: \tilde{Y} \to Y$ induce isomorphisms on higher homotopy groups π_i for $i \geq 2$, then so does $f: X \to Y$. Therefore f is a weak homotopy equivalence.

Warning 6.4. It is **NOT** true in general that a map $f: X \to Y$ which induces isomorphisms on π_1 and on integral homology $H_*(-;\mathbb{Z})$ is a weak homotopy equivalence. Not even if f induces isomorphisms on an enormous range of lowest homotopy groups. Not even if f is a nice map, e.g. the inclusion of a subcomplex into a finite CW-complex. See for example Homework 10 Problem 1.

That said, there are sufficient conditions to guarantee this kind of conclusion, which will in fact generalize 6.2.

Definition 6.5. A space X is simple if for any choice of basepoint $x \in X$, the fundamental group $\pi_1(X, x)$ acts trivially on all homotopy groups $\pi_n(X, x)$ for $n \ge 1$. (In particular, the fundamental group at any basepoint must be abelian.)

Proposition 6.6. Let X and Y be simple spaces and $f: X \to Y$ a map inducing an isomorphism on integral homology $f_*: H_*(X; \mathbb{Z}) \xrightarrow{\simeq} H_*(Y; \mathbb{Z})$. Then f is a weak homotopy equivalence. (Note that f automatically induces an isomorphism on $\pi_1 \cong H_1$ in this case, since all fundamental groups involved are abelian.)

Proof. See [2, Theorem 6#] and the discussion afterwards. Here is a sketch of the proof.

By the universal coefficient theorem, f induces an isomorphism on homology and cohomology with any trivial coefficients $f^* \colon H^*(Y; M) \xrightarrow{\simeq} H^*(X; M)$. Recall that (reduced) cohomology is represented by Eilenberg-MacLane spaces

$$\tilde{H}^n(X;M) \cong [\Gamma X, K(M,n)]_*$$

for spaces with the homotopy type of a CW-complex (and we need CW-approximation Γ for arbitrary spaces).

Since X and Y are simple, they admit simple Postnikov towers. By an inductive argument, one can show that f induces a bijection on derived homotopy classes of maps

$$f^* \colon [\Gamma Y, Z] \xrightarrow{\simeq} [\Gamma X, Z]$$

whenever Z is an (appropriate) tower built out of Eilenberg-MacLane spaces. This applies in particular to Z = X and Z = Y, from which we deduce that $f: X \to Y$ is an isomorphism in the weak homotopy category $w \operatorname{Ho}(\operatorname{Top})$, i.e. a weak homotopy equivalence.

Combining these propositions with the Whitehead theorem, we obtain the so-called homology Whitehead theorems.

Corollary 6.7. Let $f: X \to Y$ be a map between CW-complexes. In each of the following cases, it follows that f is a homotopy equivalence.

- 1. f induces an equivalence on fundamental groupoids and an isomorphism on homology with any local coefficients.
- 2. X and Y are simple, and f induces an isomorphism on integral homology.
- 3. (Particular case.) X and Y are simply-connected, and f induces an isomorphism on integral homology.

Remark 6.8. By the usual 2-out-of-3 argument (c.f. Homework 7 Problem 1a), the statement holds more generally when X and Y have the *homotopy type* of CW-complexes, instead of being CW-complexes.

7 Other applications

Proposition 7.1. Every simply-connected closed 3-manifold is homotopy equivalent to a sphere S^3 .

Proof. Let X be a simply-connected closed 3-manifold. We will first check that X is a homology sphere.

Since X is path-connected, we have $H_0(X;\mathbb{Z}) \cong \mathbb{Z}$. Since X is moreover simply-connected, we have $H_1(X;\mathbb{Z}) \cong \pi_1(X)_{ab} = 0$. Also, since X is simply-connected, it is orientable, and we have $H_3(X;\mathbb{Z}) \cong \mathbb{Z}$. By Poincaré duality, we have $H_2(X;\mathbb{Z}) \cong H^1(X;\mathbb{Z})$. By the universal coefficient theorem for cohomology, we have a short exact sequence

 $0 \to \operatorname{Ext}^{1}_{\mathbb{Z}}(H_{0}(X;\mathbb{Z}),\mathbb{Z}) \to H^{1}(X;\mathbb{Z}) \to \operatorname{Hom}_{\mathbb{Z}}(H_{1}(X;\mathbb{Z}),\mathbb{Z}) \to 0$

which yields $H^1(X;\mathbb{Z}) = 0$ since $H_0(X;\mathbb{Z}) \cong \mathbb{Z}$ is a projective \mathbb{Z} -module and $H_1(X;\mathbb{Z}) = 0$.

By the Hurewicz theorem, the Hurewicz map $h: \pi_3(X) \xrightarrow{\cong} H_3(X; \mathbb{Z}) \simeq \mathbb{Z}$ is an isomorphism. Pick a generator $\alpha \in \pi_3(X) \simeq \mathbb{Z}$ and represent it by a map $\alpha: S^3 \to X$. Then α induces isomorphisms on integral homology $\alpha_*: H_*(S^3; \mathbb{Z}) \xrightarrow{\cong} H_*(X; \mathbb{Z})$. Since S^3 and X are simplyconnected and have the homotopy type of CW-complexes, the map $\alpha: S^3 \xrightarrow{\cong} X$ is a homotopy equivalence.

The argument above proves the following.

Proposition 7.2. Let X be a simply-connected closed n-manifold, for some $n \ge 2$. If X is a homology sphere (i.e. its integral homology is isomorphic to that of S^n), then X is homotopy equivalent to a sphere S^n .

Remark 7.3. The assumption that X is simply-connected cannot be dropped in general. There are homology spheres which are not simply-connected, and thus not homotopy equivalent to S^n . See for example the Poincaré homology sphere of dimension 3, described here:

http://www.map.mpim-bonn.mpg.de/Poincar%C3%A9%E2%80%99s_homology_sphere

References

- [1] James F. Davis and Paul Kirk, *Lecture notes in algebraic topology*, Graduate Studies in Mathematics, vol. 35, American Mathematical Society, Providence, RI, 2001.
- [2] J. P. May, *The dual Whitehead theorems*, Topological topics, London Math. Soc. Lecture Note Ser., vol. 86, Cambridge Univ. Press, Cambridge, 1983, pp. 46–54.