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1 Background material

Proposition 1.1. For all n > 1, we have m,(S™) = 7Z, generated by the class of the identity
map id: S™ — S™.

Proof. The long exact sequence in homotopy of the Hopf fibration S* — S 2 S? yields the

o)

isomorphism 75(S?) = m(S'). The Freudenthal suspension theorem guarantees that m5(S?) is
already stable, so that we have isomorphisms

\gl

WQ(SQ) i‘ 7T3(SS) i‘ 7T4(S4) —_— ....

~ ~

IR

Moreover, the suspension map

P
Z%Wl(Sl) —> WQ(SZ)%’Z

is surjective, and thus an isomorphism. To conclude, note that class [idgi] € m(S?) is a
generator, and the suspension map sends the identity to the identity:

m
Alternate proof. Using a bit of differential topology (or a more geometric construction along
the lines of Hatcher § 4.1 Exercise 15), consider the degree of a smooth map f: S™ — S™. Since

every homotopy class [f] contains a smooth representative, and all such maps have the same
degree (i.e. degree is a homotopy invariant), this defines a function

deg: m,(S") — Z.

One readily shows that deg is a group homomorphism. One can show moreover that two maps
S™ — S™ with the same degree are homotopic, i.e. deg is injective. The equality deg([id]) = 1
shows that deg is surjective, hence an isomorphism. O]
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Remark 1.2. One can show that the definition of degree in differential topology coincides with
the following homological definition. The degree of a map f: S™ — S™ is the (well-defined)
integer such that the map induced on homology

for Hy(S™) — Hp(S™)
is multiplication by deg(f), noting the fact H, (S™) ~ Z. In other words, if u € H,(S™) is a
generator, then we have f,(u) = deg(f)u € H,(S™).
Lemma 1.3. Forn > 2, we have
m(S"VS") 2 Z D Z,
the free abelian group generated by the two summand inclusions v;: S™ < S™VS™ (withj = 1,2).

Forn =1, we have
m(S*VvSYH)Y=2ZxZ,

the free group generated by the two summand inclusions v;: ST — St v ST

Proof. The case n = 1 follows from the Van Kampen theorem. Now assume n > 2.
Since S™ is (n — 1)-connected, the inclusion S™V 8™ — S™ x S™ isn+n—1 = 2n—1 connected,
and in particular an isomorphism on 7y for & < 2n—2 = n+(n—2). We obtain the isomorphism
T (S™V S™) 2 7, (8" x S™)
= 71,(S™) x m,(S™)
=~ 1, (S") ® m,(S™)
SYASYA

The generators [id;| € m,(5™) on the right-hand side correspond to summand inclusions ¢;: S™ <
S™V .S™ on the left-hand side. O

Proposition 1.4. Let J be a set. For n > 2, we have
m(\/ ") = Pz
jeJ jeJ

the free abelian group generated by the summand inclusions tj: S™ —» \/jEJ S™.

Forn =1, we have

7T1(\/ Sl) = *jGJza
jeJ

the free group generated by the summand inclusions ¢;: St \/jEJ St

Proof. The case where J is finite follows by applying the same argument as in [I.3] inductively.

For an arbitrary set J, note that a compact subspace of \/ jes 9" lives in a finite subwedge
Vjes., S" for some finite subset J, C J. Therefore we obtain a (filtered) colimit

Wn(\/ S") = cogmwn( \/ S™)

jedJ j€Ja



where J, runs over all finite subsets of J (c.f. Homework 6 Problem 3). Said colimit is as
claimed in the statement: free abelian group when n > 2 and free group when n = 1. O]



2 Weak equivalence implies homology isomorphism

Proposition 2.1. Let f: X — Y be an n-connected map for some n > 0. Then f induces an
isomorphism on integral homology f.: H{(X;Z) — H;(Y;Z) for i < n and a surjection when
1=n.

In particuliar, any weak homotopy equivalence induces an isomorphism on integral homology

H,.(X:;Z) = H.(Y;Z) (and thus on homology and cohomology with any coefficients, by the
universal coefficient theorem).

Direct proof. The case n = 0 is clear, since Hy(X) is the free abelian group on my(X). Now we
assume n > 1.

WLOG X and Y are path-connected. To prove this, note that the natural transformation
HC@ro (X) C' — X is a weak homotopy equivalence and induces an isomorphism on homology.

WLOG f is an embedding, replacing Y by the mapping cylinder M(f) if needed.

By the long exact sequence in homotopy groups of the pair (Y, X), the fact that f: X — Y is
n-connected is equivalent to the vanishing of relative homotopy groups (Y, X) = 0 for £ < n.

By the long exact sequence in homology groups of the pair (Y, X)), the desired conclusion on f
is equivalent to the vanishing of relative homology groups Hy(Y, X) =0 for k < n.

Let o € Hg(Y, X). Then by gluing k-simplices appropriately, one can realize « as coming from
a k-dimensional CW-complex K, with a (k — 1)-dimensional subcomplex L C K (realizing the
boundary) which is sent to X. See Hatcher Proposition 4.21 for details. In other words, there
is a map

o: (K,L)— (Y, X)

and a class @ € Hy(K, L) satistfying o.(@) = a € Hi(Y,X). The condition m(Y,X) = 0
along with the compression lemma guarantees that o is homotopic rel L to a map ¢’: K — Y
landing entirely in X. Thus o, = o.: Hi(K,L) — Hy(Y,X) is zero, as it factors through
Hy (X, X)=0. O

Using CW-approzimation. We first show that CW-approximation induces an isomorphism on
homology. Let Sing(X) denote the singular set of X (which is a simplicial set) and |Sing(X)|
its geometric realization. One can show that the natural map e: [Sing(X)| — X is a weak
homotopy equivalence. Moreover, |Sing(X)| admits a CW-structure with a k-cell for each k-
simplex in Sing(X), in which the cellular chain complex of |Sing(X)| is the chain complex
corresponding to the simplicial abelian group obtained by taking the levelwise free abelian
group on Sing(X) — none other than the singular chain complex of X. Thus [Sing(X)| and X
have the same integral homology, and in fact € induces an isomorphism on integral homology.

This shows that the CW-approximation €: |Sing(X)| — X induces an isomorphism on homol-
ogy. But by homotopy uniqueness of CW-approximation, the same conclusion holds for any
CW-approximation.

Therefore, we may assume that X and Y are CW-complexes. Indeed, consider the commutative



diagram

rf
rxy — 1Y

’)’XjN Nl%f

X —Y
f

where I" is a functorial CW-approximation. Then f is n-connected if and only I'f is. Since yx

and vy induce isomorphisms on integral homology, the conclusion about f holds if and only if
it holds for I'f.

By the (strong form of the) Whitehead theorem, the induced map
for W, X] = WY

is surjective for any CW-complex W of dimension d < n and a bijection for d < n. Taking
W =Y, the n-skeleton of Y, the map

fe: [Yn,X] - [YnaY]

is surjective, so that there is a map g: Y,, — X satisfying [fg] = [tn]: YV, — Y, i.e. making the
diagram

f
X —Y
) {
N L
N n
g N

commute up to homotopy, where ¢,,: Y,, — Y is the skeletal inclusion. By cellular homology,
ln: Yy, — Y is surjective on homomology Hy for k < n, and thus so is f.

It remains to prove injectivity on homology Hy for k < n. Let a € Hi(X) be in the kernel of
fo: Hi(X) — Hi(Y), with & < n. Since the skeletal inclusion ¢,—1: X,—1 — X is surjective
on homology Hjy, there is a class @ € Hy(X,,_1) satisfying ¢,_1.(@) = o € Hi(X). By cellular
approximation, f: X — Y may be assumed cellular, so that its restriction f|x, , factors
through Y,,_; (and in particular through Y;,), making the square in the diagram

f
X — Y
ln—1 T \ [ ln
g
Xpog — Y,
FlXn_1

commute. Now up to homotopy, we have equality of maps X, = Y
fgf’Xn_l = ['nf’Xn_1
= an—l



but recall that the map
f*: [Xn—laX] — [Xn—la Y]

is injective, which implies the equality gf|x, , = tn—1 up to homotopy. In homology we obtain
a = Ln—l*(a)
= g*f Xn—l*(a>

= 9+(0)
=0.

Indeed, the class f|x,_,«(@) satisfies

b f X1 (@) = fitn-14(@)
= [«(a)
=0
but again by cellular homology, t,.: Hx(Y,) — H(Y) is injective for k < n. O

Remark 2.2. If all we care about is the special case n = 0o, then no need to play around with
skeletal inclusions. By Whitehead, a weak homotopy equivalence between CW-complexes is a
homotopy equivalence, and therefore induces an isomorphism on homology.

Corollary 2.3. Let f: X — Y be an n-connected map for somen > 0, and let M be an abelian
group. Then the following holds.

1. The induced map on homology with coefficients in M
for Hi(X; M) — H;(Y; M)
1s an isomorphism for i < n and a surjection when i = n.
2. The induced map on cohomology with coefficients in M
[ H(Y; M) — H(X; M)
1s an isomorphism for i < n and an injection when i = n.

Proof. 1. The universal coefficient theorem for homology provides a map of short exact se-
quences

0 — Hi(X;Z)®z M — Hy(X;M) — Tor? (H;_(X;Z),M) — 0

| | |

0 — H,(Y;Z)®; M — H;(Y;M) — Tor” (H,_(Y;Z),M) — 0



where the two outer downward maps are isomorphisms when ¢ < n, and hence so is the middle
downward map H;(X; M) — H;(Y; M).

In the case i = n, the left downward arrow is surjective, while the right downward arrow is an
isomorphism. Therefore the middle downward map H;(X; M) — H;(Y; M) is surjective.

2. The universal coefficient theorem for cohomology provides a map of short exact sequences

0 — Extl(H,(Y:Z),M) —= Hi(Y; M) —— Homg (H;(Y;Z),M) — 0

| | |

0 — Exty (H; (X;Z),M) — H'(X;M) — Homg (H;(X;Z),M) — 0

where the two outer downward maps are isomorphisms when ¢ < n, and hence so is the middle
downward map H(Y; M) — H'(X; M).

In the case i = n, the left downward arrow is an isomorphism, while the right downward arrow
is injective. Therefore the middle downward map H*(Y; M) < H'(X; M) is injective. O

Ezxample 2.4. The map S™ — * is n-connected. The induced map on homology with coefficients
fo: Hi(S™, M) — H;(x; M)

is indeed an isomorphism for ¢ < n, and the surjection M — 0 for i = n.

The induced map on cohomology with coefficients
f*r H'(%; M) — H'(S™; M)

is indeed an isomorphism for ¢ < n and the injection 0 < M for ¢ = n.



3 Hurewicz morphism

Let n > 1 and recall the homology group H,(S"™) ~ Z. There is no canonical choice of
generator (between the two choices), so we will fix generators once and for all. More precisely,
pick a generator u; € H;(S') and pick the remaining generators u,, € H,(S") so that via the
suspension isomorphism

Hyya (S"1) = H,o,(S™)
Ups1 corresponds to u,, for all n > 1.

Remark 3.1. One can (and shouldl start with n = 0, but then one must use reduced homology
throughout, so that the condition H,,(S™) = Z also holds when n = 0. Moreover, the suspension

isomorphism for reduced homology H,(X) = H,1(XX) holds for all n > —1, whereas the
suspension isomorphism for unreduced homology H,(X) = H,1(SX) only holds for n > 1.

Definition 3.2. Let n > 1 and let a: " — X be any map. Consider the induced map on
integral homology

7~ H,(s") 2% 1, (x)

and define h(a) := H,(a)(u,) € H,(X), the “image of 17 under that map. Since homology is
a homotopy functor, this assignment is a well-defined function

h:m(X) — Hy(X)
called the Hurewicz morphism.

Proposition 3.3. The Hurewicz map is a group homomorphism.

Proof. Let o, 8: S™ — X be two maps. Their sum in 7, (X) (where “sum” might be non-
commutative when n = 1) is represented by the composite

P avp v
S — §"VSY —— XVX — X

where p: S™ — 8™V §" is the usual pinch map, and V: X VX — X is the fold map. Applying
homology and using the natural isomorphism H,(X VY) = H,(X) ® H.(Y), we obtain the
commutative diagram

Px (Oévﬁ)* Vi

H,(S™V 5" Hy(XVX) —= Hy(X)

N -

H,(S™) & H,(S") m H,(X) & Ho(X).

H,(S™)

The image of the generator u, € H,(S™) along the top composite is h(a + ) and along the
bottom composite is h(a) + h(f). O



Proposition 3.4. The Hurewicz morphism is natural, and compatible with the suspension map,
in the sense that the diagram

commutes.

Proof. Naturality. This follows from functoriality of homology. Let f: X — Y be a map. We
want to show that the diagram

Suspension. This follows from naturality of the suspension map on homology, i.e. commuta-
tivity of the diagram

Hy 1 (EW) —— Hpp1(2X)
Hyt1(2g)

for any map g: W — X.



Given a € 7,(X) represented by a map a: S™ — X we have:

= Hp (ZO‘) (un-i-l)

= H,1(X«)(Xu,) by our convention on generators u,,
Hy (o) (un)
(h(e)).
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4 Hurewicz theorem

First we treat the case n = 1 separately.

Lemma 4.1. For any wedge of circles, the Hurewicz morphism

hem(\/ 8" = Hi(\/ S")

jeJ jed
18 the abelianization morphism.

Proof. By the left-hand side is the free group generated by summand inclusions ¢;: S* —
\/je ; St The Hurewicz map sends those to classes

h(t;) = 1. (w) € Hi(\/ ") = €D Hi(S").

jeJ jeJ

These classes form a basis of the right-hand side as a free abelian group. This explicit description
exhibits h as the abelianization. O]

Theorem 4.2. Let X be a path-connected space. Then the Hurewicz morphism forn =1
h:m(X)— Hi(X)
18 the abelianization morphism.

Proof. See Hatcher § 2.A Theorem 2A.1 or May § 15.1. O

Lemma 4.3. Let n > 2. For any wedge of n-spheres, the Hurewicz morphism

h: Wn(\/ S™) — Hn(\/ S™)

jed jet
s an isomorphism.

Proof. First, note that the statement holds for a single sphere. For a € m,(S™), its Hurewicz
image is

h(a) = H,(a)(uy,) = deg(a)u,, € H,(S™).

Hence, up to the choice of generator H,(S™) ~ Z, the Hurewicz map is the degree map

deg L

Wn(Sn) - Hn(Sn>
h

which we know is an isomorphism, by
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Now consider an arbitrary wedge of n-spheres. By the left-hand side is the free abelian
group generated by summand inclusions ¢;: S™ — \/._; S™. The Hurewicz map sends those to

jed
classes
h(v) = ju(un) € Hy(\/ §™) = @5 Ha(S™).
jeJ jeJ
These classes form a basis of the right-hand side as a free abelian group. m

Theorem 4.4. Let X be an (n — 1)-connected space for some n > 2. Then the Hurewicz
morphism
h: m(X) — H,(X)

s an isomorphism.

Proof. By 2.1 we may replace X by a weakly equivalent space. By CW-approximation, we
may assume X is a CW-complex with a single 0-cell and cells in dimension at least n. Since
both m,(X) and H,(X) are determined by the (n + 1)-skeleton X, 1, we may assume X is
(n + 1)-dimensional. The n-skeleton X,, = \/, S" is a wedge of n-sphere, and therefore X is
obtained as the cofiber

¢ 9

Visn - \/an — X

of a map ¢: A — B between wedges of n-spheres. (Here we used the fact that for well-
pointed spaces, an unpointed cofiber is equivalent to a pointed cofiber. We may assume that
all attaching maps in the CW-structure are pointed.)

Applying homology to the cofiber sequence A — B — X yields an exact sequence
H,(A) —= H,(B) —= H,(X) —= H,1(4)=0

where we used H,_1(A) = H,-1(\/;S") = @, H,—1(5™) = 0.

Now ¢g: B — X is the inclusion of the n-skeleton, and therefore an n-connected map, so that
Tn(B) — m,(X) is surjective. In other words, the sequence

Tn(B) = m,(X) — 0

1s exact.

Consider the homotopy pushout square

P

—_—

A B
ho

j rtg

* —— X

where A — x is n-connected and the attaching map ¢: A — B is (n — 1)-connected. By
Blakers-Massey homotopy excision, the square is n+ (n — 1) — 1 = 2n — 2 Cartesian. Therefore
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the map induced on the vertical homotopy fibers A — F(g) is (2n—2)-connected. In particular,
since n > 2, we have n < n + (n — 2) = 2n — 2 and so the induced map

Tn(A) = m,(F(g))

is surjective. Therefore applying 7, to the cofiber sequence A — B — X yields the sequence

T (F(9))

s

Tn(A) —— m(B) —— m,(X)

Px gx

which is exact at 7, (B), because of the equality
im ¢, = imy, = ker g,.

Putting these facts together, applying the Hurewicz morphism to the cofiber sequence A —
B — X yields a commutative diagram

Tn(A) —— m(B) —— m(X) — 0

where both rows are exact.

By , the first two downward maps h: m,(A) = H,(A) and h: m,(B) = H,(B) are isomor-

[

phisms. By the 5-lemma, the last map h: m,(X) — H,(X) is also an isomorphism. O

Remark 4.5. Proposition [I.1| can be recovered as an easy special case. Since the sphere S™ is
(n — 1)-connected, the Hurewicz map 7, (S™) — H,(S™) ~ Z is an isomorphism.

Corollary 4.6. Let X be an (n—1)-connected space for somen > 2. Then the integral homology
of X satisfies Hy(X) =0 for k <n and H,(X) = m,(X).

Proof. Apply the Hurewicz theorem successively in dimensions 1,2, ..., n. O

In other words, for simply-connected spaces, the bottom non-trivial homotopy group coincides
with the bottom non-trivial homology group.
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5 Relative version

There is a similarly defined relative Hurewicz morphism
h: m, (X, A) — H,(X, A)
for n > 2, using the fact H,(D",dD") = H,(D"/dD") ~ Z.

Proposition 5.1. The relative Hurewicz morphism is natural, and is a group homomorphism.
Moreover, it is compatible with the long exact sequences in homotopy and homology of a pair
(X, A).

Theorem 5.2. Let (X, A) be an (n — 1)-connected pair for some n > 2, where A is path-
connected (and therefore so is X ). Assume moreover that A is simply-connected (and therefore
s0is X ). Then we have H;(X, A) = 0 fori < n and the Hurewicz map h: m,(X, A) = H,(X, A)
s an isomorphism.

One can weaken the connectivity assumptions on A and X, but then the correct statement
becomes more subtle.

Theorem 5.3. Let (X, A) be an (n — 1)-connected pair for some n > 2, where A is path-
connected (and therefore so is X ). Then the Hurewicz map h: m, (X, A) — H,(X,A) is the
map factoring out the action of w1 (A). More precisely, the quotient by the normal subgroup
generated by all elements o« — v - «, for v € m(A) and a € 7, (X, A).

In particular, if 7,(X, A) vanishes, then so does H,(X, A).

Proof. See tom Dieck § 20.1, in particular Theorem 20.1.11. m

Remark 5.4. Proposition [2.1] can be recovered using this theorem. The assumption was that the
relative homotopy groups m;(Y, X)) vanish for ¢ < n. In the case n > 2, the relative Hurewicz
theorem implies that the relative homology groups H;(Y, X) also vanish for i < n.

To treat the case n = 1, use the functorial description Hy(X) = m1(X )ap. The map m(f): m(X) —
7m1(Y) being surjective guarantees that Hy(f): Hi(X) — Hi(Y) is also surjective, from which
we conclude Hy (Y, X) = 0.
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6 Homology Whitehead theorem

Consider a map f: X — Y. In this section it will be useful to keep the commutative diagram

L (X)) —— m(Y) —> m((V,X) —> m(X) — m(Y) — m((V,X) — m(X)

T T

. HQ(X) —_— HQ(Y) e HQO/,X) —_— Hl(X) —_— Hl(Y) —_— H1(KX) —_— Ho(X)

in mind, though we will not explicitly refer to it.

Recall from that a weak homotopy equivalence induces isomorphisms on homology and
cohomology with any (trivial) coefficients. More is true.

Proposition 6.1. A weak homotopy equivalence induces isomorphisms on homology and coho-
mology with any local coefficients.

~Y

Proof. This can be proved by passing to universal covers, and using the fact H, ()N( AR
H.(X;Zm (X)) (Hatcher § 3.H Example 3H.2 or |1, Exercise 73]) along with an appropriate
analogue of the universal coefficient theorem. O

Proposition 6.2. Let X andY be simply-connected spaces and f: X — Y a map which induces
an isomorphism on integral homology f.: H (X;Z) — H.(Y;Z). Then f is a weak homotopy
equivalence.

Proof. We know X and Y are path-connected. Since Y is moreover simply-connected, we have
m1(Y, X) = 0 so that the pair (Y, X) is 1-connected. By the relative Hurewicz theorem, we have
the isomorphism
T (Y, X) = Hy(Y,X) =0

where the relative homology group vanishes since f induces isomorphisms on integral homology.
Thus the pair (Y, X)) is 2-connected. Repeating this argument inductively, we conclude that
all relative homotopy groups m;(Y, X) vanish for i > 1, so that f: X = Y is a weak homotopy
equivalence. O

Proposition 6.3. Let f: X — Y be a map inducing an equivalence of fundamental groupoids
[Ty and an isomorphism on homology with any local coefficients. Then f is a weak homotopy
equivalence.

Proof. WLOG X and Y are path-connected. Then the condition on fundamental groupoids
means that f induces an isomorphism on 7.

By CW-approximation, we may assume that X and Y are CW-complexes. Indeed, consider
the commutative diagram

rf
rx — 1y

wle |

X —Y
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where " is a functorial CW-approximation. By 2-out-of-3, I'f is a weak homotopy equivalence
if and only if f is. By both vx and 7y induce isomorphisms on 7; and homology with local
coefficients. But the class of all such maps also satisfies 2-out-of-3.

All we want here is that X and Y are locally contractible, and in particular locally path-
connected and semi-locally simply-connected, and thus admit universal covers. Let px: X — X
and py: Y — Y denote the universal covers of X and Y respectively. Consider the commutative
diagram

f
—_—

X Y
| e
X Y

S
f

where f: XY trivially induces an isomorphism on ;. Using the isomorphisms
H,(X;Z) =~ H,(X;Zm (X))
H.(Y;Z) = H(Y; Zm(Y))

we deduce that f induces an isomorphism on integral homology. Indeed, by assumption f
induces an isomorphism on homology with local coefficients

for Ha(X; fZm(Y)) 5 Ho(Y Zm(Y))
and since f also induces an isomorphism on 7, we have the isomorphism
H (X; fZm(Y)) = H (X; Zm (X)).

By , it follows that f: X 3V is a weak homotopy equivalence. Since both covering maps
px: X — X and py: Y — Y induce isomorphisms on higher homotopy groups m; for ¢ > 2,
then so does f: X — Y. Therefore f is a weak homotopy equivalence. O

Warning 6.4. It is NOT true in general that a map f: X — Y which induces isomorphisms on
7 and on integral homology H.(—;Z) is a weak homotopy equivalence. Not even if f induces
isomorphisms on an enormous range of lowest homotopy groups. Not even if f is a nice map,

e.g. the inclusion of a subcomplex into a finite CW-complex. See for example Homework 10
Problem 1.

That said, there are sufficient conditions to guarantee this kind of conclusion, which will in fact
generalize [6.2]

Definition 6.5. A space X is simple if for any choice of basepoint x € X, the fundamental
group m1(X, x) acts trivially on all homotopy groups m,(X,z) for n > 1. (In particular, the
fundamental group at any basepoint must be abelian.)

Proposition 6.6. Let X and Y be simple spaces and f: X — 'Y a map inducing an isomor-
phism on integral homology f.: H.(X;Z) = H.(Y;Z). Then f is a weak homotopy equivalence.
(Note that f automatically induces an isomorphism on m = Hy in this case, since all funda-
mental groups involved are abelian.)
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Proof. See [2, Theorem 6#] and the discussion afterwards. Here is a sketch of the proof.

By the universal coefficient theorem, f induces an isomorphism on homology and cohomology
with any trivial coefficients f*: H*(Y; M) — H*(X; M). Recall that (reduced) cohomology is
represented by Eilenberg-MacLane spaces

H(X; M) = [[X, K(M,n)].

for spaces with the homotopy type of a CW-complex (and we need CW-approximation I" for
arbitrary spaces).

Since X and Y are simple, they admit simple Postnikov towers. By an inductive argument,
one can show that f induces a bijection on derived homotopy classes of maps

Y, Z] = [I'X, Z]

whenever Z is an (appropriate) tower built out of Eilenberg-MacLane spaces. This applies in
particular to Z = X and Z =Y, from which we deduce that f: X — Y is an isomorphism in
the weak homotopy category w Ho(Top), i.e. a weak homotopy equivalence. O

Combining these propositions with the Whitehead theorem, we obtain the so-called homology
Whitehead theorems.

Corollary 6.7. Let f: X — Y be a map between CW-complexes. In each of the following
cases, it follows that f is a homotopy equivalence.

1. f induces an equivalence on fundamental groupoids and an isomorphism on homology with
any local coefficients.

2. X andY are simple, and f induces an isomorphism on integral homology.

3. (Particular case.) X and Y are simply-connected, and [ induces an isomorphism on
integral homology.

Remark 6.8. By the usual 2-out-of-3 argument (c.f. Homework 7 Problem 1la), the statement
holds more generally when X and Y have the homotopy type of CW-complexes, instead of being
CW-complexes.
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7 Other applications

Proposition 7.1. Every simply-connected closed 3-manifold is homotopy equivalent to a sphere

S8,

Proof. Let X be a a simply-connected closed 3-manifold. We will first check that X is a
homology sphere.

Since X is path-connected, we have Hy(X;Z) = Z. Since X is moreover simply-connected,
we have Hi(X;Z) = m(X)ap = 0. Also, since X is simply-connected, it is orientable, and we
have H3(X;Z) = Z. By Poincaré duality, we have Ho(X;Z) = H'(X;Z). By the universal
coefficient theorem for cohomology, we have a short exact sequence

0 — Exty,(Ho(X;Z),Z) — H'(X;Z) — Homg(H,(X;Z),Z) — 0
which yields H'(X;Z) = 0 since Hy(X;Z) = Z is a projective Z-module and H,(X;Z) = 0.

By the Hurewicz theorem, the Hurewicz map h: m3(X) = Hs(X;Z) ~ Z is an isomorphism.
Pick a generator @ € 73(X) ~ Z and represent it by a map a: S* — X. Then «a induces
isomorphisms on integral homology a,: H,(S% Z) = H,(X;Z). Since S* and X are simply-
connected and have the homotopy type of CW-complexes, the map a: S* = X is a homotopy
equivalence. O]

The argument above proves the following.

Proposition 7.2. Let X be a simply-connected closed n-manifold, for somen > 2. If X is a
homology sphere (i.e. its integral homology is isomorphic to that of S™), then X is homotopy
equivalent to a sphere S™.

Remark 7.3. The assumption that X is simply-connected cannot be dropped in general. There
are homology spheres which are not simply-connected, and thus not homotopy equivalent to
S™. See for example the Poincaré homology sphere of dimension 3, described here:

http://www.map.mpim-bonn.mpg.de/Poincar’C3%A9%E27,80%99s_homology_sphere
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