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The notion of homotopy pullback is meant as a homotopy invariant approximation of strict
pullbacks, which are not homotopy invariant.

1 Definitions

Definition 1.1. Consider a diagram

Y

g
��

X
f

// Z

in Top. The homotopy pullback of the diagram is

X ×h
Z Y := X ×Z Z

I ×Z Y

= {(x, γ, y) ∈ X × ZI × Y | γ(0) = f(x), γ(1) = g(y)}

together with the projection maps making the diagram

X ×h
Z Y

pX
��

pY
// Y

g

��

X
f

// Z

(1.2)

commute up to homotopy. In fact, the diagram (1.2) commutes up to a canonical homotopy
H : X ×h

Z Y → Z from fpX to gpY given by H(x, γ, y, t) = γ(t).

∗Updated May 8, 2017. I thank David Carchedi for discussions that helped clarify the proof of Proposi-
tion 2.3.
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Example 1.3. The homotopy pullback of the diagram

X

f
��

∗
y0

// Y

is the homotopy fiber of f over the basepoint y0 ∈ Y :

∗ ×h
Y X

∼= {(γ, x) ∈ Y I ×X | γ(0) = y0, γ(1) = f(x)} ∼= F (f).

A map ϕ : W → X ×h
Z Y consists of the data of maps ϕX : W → X and ϕY : W → Y , given

by ϕX = pXϕ and ϕY = pY ϕ, along with a homotopy from fϕX to gϕY , as illustrated in the
diagram:

W

ϕX

((

ϕ

##

ϕY

��

X ×h
Z Y

pX
��

pY
// Y

g

��

X
f

// Z.

In particular, the strictly commutative diagram

X ×Z Y

pX
��

pY
// Y

g

��

X
f

// Z

yields a canonical map
X ×Z Y → X ×h

Z Y

from the strict pullback to the homotopy pullback, which generalizes the inclusion of the
strict fiber into the homotopy fiber.
More generally, any strictly commutative diagram

W

ϕX

��

ϕY

// Y

g
��

X
f

// Z
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yields a canonical map
W → X ×h

Z Y (1.4)

via the stationary homotopy of fϕX = gϕY , so that the map (1.4) is the composite

W → X ×Z Y → X ×h
Z Y.

Another description of the homotopy pullback is the strict pullback of the path space con-
structions on f and g, as illustrated in the diagram:

Y

'
��

P (f)×Z P (g)

��

y
// P (g)

��

X
'

// P (f) // Z.

In other words, the homotopy pullback is obtained by replacing the two maps by fibrations
and then taking the strict pullback. We will see shortly that it suffices to replace only one
of the maps by a fibration.
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2 Basic properties

In order to prove Proposition 2.3, we make a short excursion into 2-categories.

Lemma 2.1. Let C be a (strict) 2-category, f : X
'−→ Y an equivalence in C, g : Y → X a

1-morphism, and η : 1X
∼= gf a 2-isomorphism. Then there exists a unique 2-isomorphism

ε : fg ∼= 1Y making (f, g, η, ε) into an adjoint equivalence.
Likewise with the roles of η and ε reversed.

Proof. See [4, §3] or [2, Exercise 2.2].

We will apply this lemma in the following 2-category.

Example 2.2. Consider the track category (i.e. groupoid-enriched category) of topological
spaces. Objects are topological spaces X, 1-morphisms are continuous maps f : X → Y , and
2-morphisms [H] : f ⇒ g are tracks, i.e., homotopy classes of homotopies H : X × I → Y
from f to g rel X × ∂I.

Proposition 2.3. The pullback of a homotopy equivalence along a fibration is again a ho-
motopy equivalence.

Proof. Consider the (strict) pullback diagram

X ×B E = P

p′

��

f ′

'?

// E

p

��

X
f

'
// B

g

aa

where p : E → B is a fibration and f : X
'−→ B is a homotopy equivalence. We want to show

that f ′ : P → E is a homotopy equivalence. The proof will proceed in two steps:

1. Produce a map g′ : E → P satisfying f ′g′ ' 1E.

2. Show that g′ also satisfies g′f ′ ' 1P , and thus g′ is homotopy inverse to f ′.

Step 1. Let g : B → X be a homotopy inverse of f : X
'−→ B. Choose a homotopy F : B ×

I → B from 1B to fg; we denote this by F : 1B ⇒ fg. Precomposing by p yields the
homotopy Fp : E × I → B from p to fgp, that is, Fp : p ⇒ fgp. Note that at time 0, the
map (Fp)0 = p : E → B lifts to E to the map F̃0 = 1E : E → E.

Since p is a fibration, we can lift the homotopy Fp to a homotopy F̃ : E × I → E with
prescribed lift at time 0, F̃0 = 1E. At time 1, we obtain a map F̃1 : E → E which lifts

pF̃1 = (Fp)1 = fgp : E → B.
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Hence, the maps gp : E → X and F̃1 : E → E together define a map g′ : E → P to the
pullback in the diagram

E

gp

''

g′   

F̃1

��

P

p′

��

f ′

// E

p
��

X
f

'
// B.

By construction, the map g′ : E → P satisfies f ′g′ = F̃1 ' F̃0 = 1E.

Step 2. By Lemma 2.1, there exists a homotopy G : 1X ⇒ gf making (f, g,G, F reverse) into
an adjoint homotopy equivalence, i.e., an adjoint equivalence in the track category of spaces,
as in Example 2.2. One of the triangle equations, the equality of tracks

[fG] = [Ff ] : f ⇒ fgf,

says that there is a map A : X × I2 → B whose restriction to the boundary X × ∂I2 is as
illustrated in this diagram:

f

fgf

f .

fgf

1f

1fgf

fG FfA

Consider the map fp′ = pf ′ : P → B and the homotopy fGp′ : fp′ ⇒ fgfp′. Let G̃ : P ×
I → E be a lift of the homotopy fGp′ : P × I → B beginning with the prescribed lift
G̃0 = f ′ : P → E.
Consider the map Ap′ : P × I2 → B, and let Ã : P × I2 → E be a lift of Ap′ with prescribed
lift as follows. Let Λ ⊂ I2 denote the left, bottom, and right sides of the square I2, and
consider the prescribed lift P × Λ→ E as illustrated in this diagram:

G̃0 = f ′

G̃1

F̃0f
′ = f ′.

F̃1f
′

1f ′

G̃ F̃f ′
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At the top of the square I×{1} ⊂ I2, the map pÃ = Ap′ restricts to the stationary homotopy
1fgfp′ = f(1gfp′). Hence, we obtain a map into the pullback

(1gfp′ , Ã|I×{1}) : P × I → X ×B E = P

which provides a homotopy between

(gfp′, Ã0,1) = (gfp′, G̃1)

and
(gfp′, Ã1,1) = (gpf ′, F̃1f

′) = (gp, F̃1)f ′ = g′f ′.

On the left side of the square, we obtain a homotopy (Gp′, G̃) : P × I → P between

(G1p
′, G̃1) = (gfp′, G̃1)

and
(G0p

′, G̃0) = (p′, f ′) = 1P ,

which proves g′f ′ ' 1P .

Remark 2.4. The statement of Proposition 2.3 can be found in [1, Corollary 1.4]. Also, the
proposition says that the Hurewicz model structure on topological spaces is right proper,
which follows from the fact that every object is fibrant, i.e., for every space X, the map to a
point X → ∗ is a fibration. More details can be found in [3, Theorem 17.1.1].

Lemma 2.5. The pullback of a weak homotopy equivalence along a Serre fibration is again
a weak homotopy equivalence.

Proof. Consider the (strict) pullback diagram

X ×B E = P

p′

��

f ′

∼?

// E

p

��

X
f

∼
// B

where p : E → B is a Serre fibration and f : X
∼−→ B is a weak homotopy equivalence. We

want to show that f ′ : P → E is a weak homotopy equivalence.
The map p′ : P → X is a Serre fibration, being the pullback of a Serre fibration. Since the
diagram is a strict pullback, the strict fibers (vertically) are isomorphic:

F

��

F

��

P

p′

��

f ′

//

y
E

p
��

X
f

∼
// B.
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By the long exact sequence in homotopy of a Serre fibration, along with the (improved)
5-lemma, f ′ is a weak homotopy equivalence.

Proposition 2.6. 1. The natural maps P (f)×Z Y
'−→ X×h

Z Y and X×Z P (g)
'−→ X×h

Z Y
are homotopy equivalences.

2. If either f or g is a fibration, then the inclusion of the strict pullback into the homotopy
pullback X ×Z Y

'−→ X ×h
Z Y is a homotopy equivalence.

Proof. Consider the following diagram where each square is a strict pullback:

X ×Z Y

��

//

y
P (f)×Z Y

'
��

//

y
Y

'
��

g

��

X ×Z P (g)

��

'
//

y
X ×h

Z Y

��
��

y
// // P (g)

��
��

X

f

88'
// P (f) // // Z

and fibrations are indicated by a double arrowhead. We used the fact that the pullback of a
fibration is always a fibration, and the pullback of a homotopy equivalence along a fibration
is a homotopy equivalence, by Proposition 2.3. This proves (1).

If g : Y → Z is a fibration, then X ×Z Y
'−→ P (f) ×Z Y is a homotopy equivalence. If

f : X → Z is a fibration, then X×Z Y
'−→ X×Z P (g) is a homotopy equivalence. This proves

(2).

Therefore, it suffices to replace only one of the two maps by a fibration in order to build the
homotopy pullback.

Proposition 2.7. If either f or g is a Serre fibration, then the inclusion of the strict pullback
into the homotopy pullback X ×Z Y

'−→ X ×h
Z Y is a weak homotopy equivalence.

Proof. Same proof as Proposition 2.6 (2), but using the fact that the pullback of a weak
homotopy equivalence along a Serre fibration is a weak homotopy equivalence, Lemma 2.5
.
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3 Homotopy pullback squares

Definition 3.1. A homotopy commutative diagram

W

ϕX

��

ϕY

// Y

g
��

X
f

// Z

is called a homotopy pullback is there exists a homotopy equivalence ϕ : W
'−→ X ×h

Z Y
satisfying ϕX = pXϕ and ϕY = pY ϕ, as illustrated in the diagram:

W

ϕX

((

ϕ

' ##

ϕY

��

X ×h
Z Y

pX
��

pY
// Y

g

��

X
f

// Z.

In other words, we allow a more flexible definition of homotopy pullback than the specific
construction X ×h

Z Y introduced in Definition 1.1.

Remark 3.2. A strict pullback diagram

X ×Z Y

pX
��

pY
// Y

g

��

X
f

// Z

is also called a Cartesian square, because it generalizes the Cartesian product, which is just
the pullback over the terminal object:

X × Y

pX
��

pY
// Y

��

X // ∗.

In light of this, a homotopy pullback square is also called a homotopy Cartesian square.

8



Example 3.3. By definition, the diagram

X ×h
Z Y

pX
��

pY
//

y
ho

Y

g

��

X
f

// Z

is a homotopy pullback.

Example 3.4. If either f or g is a fibration, then the strict pullback diagram

X ×Z Y

pX
��

pY
//

y
Y

g

��

X
f

// Z

is also a homotopy pullback, by Proposition 2.6.

Example 3.5. For any map f : X → Y and basepoint y0 ∈ Y , the (homotopy commutative)
diagram

F (f)

��

//

y
ho

X

f
��

∗
y0

// Y

is a homotopy pullback.
In particular, the diagram

ΩX

��

//

y
ho

∗

x0

��

∗
x0

// X

is a homotopy pullback.

Exercise 3.6 (Pasting lemma for homotopy pullbacks). Consider a homotopy commutative
diagram

A

��

// B

��

// C

��

X // Y // Z

and show the following statements.
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1. If both inner squares are homotopy pullbacks, then so is the outer rectangle.

2. If the right-hand square and the outer rectangle are homotopy pullbacks, then so is the
left-hand square.

Proposition 3.7. In a homotopy pullback square of pointed spaces

P

g′

��

f ′

//

y
ho

Y

g
��

X
f

// Z

the vertical homotopy fibers are homotopy equivalent: F (g′) ' F (g).
By symmetry, the horizontal homotopy fibers are also homotopy equivalent: F (f ′) ' F (f).

Proof. Consider the inclusion of the basepoints of X and Z respectively, which makes the
bottom triangle commute:

P

g′

��

f ′

//

y
ho

Y

g
��

X
f

// Z

∗.
x0

``

z0

>>

Taking the homotopy pullback of g along the inclusion ∗ z0−→ Z yields

F (g)

��

//

y
ho

Y

g

��

∗
z0

// Z.

By commutativity z0 = f ◦ x0, this is equivalent to the same homotopy pullback obtained in
two steps:

F (g′)

��

//

y
ho

P

g′

��

//

y
ho

Y

g

��

∗
x0

// X
f

// Z

which proves the homotopy equivalence F (g′) ' F (g).

10



Remark 3.8. Strict fibers in a strict pullback are isomorphic; homotopy fibers in a homotopy
pullback are homotopy equivalent. Mixing the two notions does not work.
Strict fibers in a homotopy pullback are not equivalent in general, for example:

ΩX

��

6' ∗

��

ΩX

��

//

y
ho

∗

��

∗ // X.

Homotopy fibers in a strict pullback are not equivalent in general, for example:

∗

��

6' ΩX

��

∗

��

//

y
∗

��

∗ // X.

11



4 Homotopy invariance

Proposition 4.1. A homotopy pullback of a homotopy equivalence is a homotopy equivalence.

Proof. Consider a homotopy pullback diagram

P

g′'?
��

f ′

//

y
ho

Y

g'
��

X
f

// Z.

where g is a homotopy equivalence. We want to show that g′ : P → X is a homotopy
equivalence. By definition of homotopy pullback, and since homotopy equivalences satisfy
the 2-out-of-3 property, we may assume P is any of the explicit constructions of X ×h

Z Y , so
we assume P = P (f)×Z Y . In the diagram

P (f)×Z Y
g′

zz

p1
��

f ′

//

y
Y

g'
��

X

f

::'
// P (f)

ev1

// // Z.

the projection map p1 : P (f) ×Z Y
'−→ P (f) is a homotopy equivalence, being the pullback

of the homotopy equivalence g along the fibration ev1. By 2-out-of-3, g′ is a homotopy
equivalence.

Corollary 4.2. Any homotopy commutative square

W

ϕX '
��

ϕY

// Y

g '
��

X
f

// Z.

with vertical homotopy equivalences is a homotopy pullback.
By symmetry, the same statement holds for horizontal homotopy equivalences.
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Proof. Since the diagram is homotopy commutative, there is a map ϕ : W → X ×h
Z Y satis-

fying pXϕ = ϕX and pY ϕ = ϕY in the following diagram:

W

ϕX

'

((

ϕ

##

ϕY

��

X ×h
Z Y

pX
��

pY
//

y
ho

Y

g '
��

X
f

// Z.

By Proposition 4.1, the projection pX is a homotopy equivalence. By 2-out-of-3, ϕ is a
homotopy equivalence, so that the original square was a homotopy pullback.

Proposition 4.3 (Homotopy invariance of homotopy pullbacks). Let ϕ be a map of diagrams
as illustrated here:

Y

ϕY'

��

~~

X

ϕX'

��

// Z

ϕZ'

��

Y ′

~~

X ′ // Z ′

and assume that ϕ is an objectwise homotopy equivalence. That is, ϕX , ϕY , and ϕZ are
homotopy equivalences. Then the map induced on homotopy pullbacks ϕP : X×h

Z Y → X ′×h
Z′

Y ′ is a homotopy equivalence, as illustrated here:

P

~~

ϕP'

��

//

y
ho

Y

ϕY'

��

~~

X

ϕX'

��

// Z

ϕZ'

��

P ′

~~

//

y
ho

Y ′

~~

X ′ // Z ′
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Proof. By Corollary 4.2, the right-hand face of the cube is a homotopy pullback. By the
“pasting lemma” 3.6, the top face followed by the right-hand face

P //

��

y
ho

Y
ϕY

// Y ′

��

X // Z
ϕZ

// Z ′

form a homotopy pullback. By commutativity of the cube, this “rectangle” is equal to the
left-hand face followed by the bottom face

P //

��

y
ho

P ′ // Y ′

��

X
ϕX

// X ′ // Z ′

Since the bottom face

P ′ //

��

y
ho

Y ′

��

X ′ //// Z ′

is a homotopy pullback, then so is the left-hand face

P //

ϕP

��

y
ho

X

ϕX

��

P ′ //// X ′

by the pasting lemma 3.6. Since ϕX is a homotopy equivalence, so is ϕP by Proposition 4.1.
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5 Weak homotopy invariance

Proposition 5.1. For any choice of basepoint z0 ∈ Z, the homotopy pullback X ×h
Z Y is

naturally the total space of a fibration:

ΩZ // X ×h
Z Y

(pX ,pY )

// X × Y.

Proof. The homotopy pullback can be expressed as

X ×h
Z Y = X ×Z Z

I ×Z Y ∼= (X × Y )×(Z×Z) Z
I

which is the strict pullback of the diagram

X ×h
Z Y

(pX ,pY ) ��
��

// ZI

(ev0,ev1)��
��

X × Y
(f,g)

// Z × Z.

Since (ev0, ev1) is a fibration, then so is its pullback (pX , pY ) and their fibers are equivalent.
Said fiber is the loop space {γ ∈ ZI | γ(0) = γ(1) = z0} = ΩZ.

Corollary 5.2. There is a Mayer-Vietoris sequence for the homotopy of a homotopy pullback:

. . . // πn+1(Z) // πn(X ×h
Z Y )

pX∗+pY ∗
// πn(X)⊕ πn(Y )

f∗−g∗
// πn(Z) // . . .

Proof. Consider the long exact sequence in homotopy of the fibration from Proposition 5.1.
One readily checks that the maps are as claimed.

Proposition 5.3 (Weak homotopy invariance of homotopy pullbacks). Let ϕ be a map of
diagrams as illustrated here:

Y

ϕY∼

��

~~

X

ϕX∼

��

// Z

ϕZ∼

��

Y ′

~~

X ′ // Z ′
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and assume that ϕ is an objectwise weak homotopy equivalence. That is, ϕX , ϕY , and ϕZ are
weak homotopy equivalences. Then the map induced on homotopy pullbacks ϕP : X ×h

Z Y →
X ′ ×h

Z′ Y
′ is a weak homotopy equivalence, as illustrated here:

P

~~

ϕP∼

��

//

y
ho

Y

ϕY∼

��

~~

X

ϕX∼

��

// Z

ϕZ∼

��

P ′

~~

//

y
ho

Y ′

~~

X ′ // Z ′

Proof. The induced maps ϕX × ϕY : X × Y
∼−→ X ′ × Y ′ and ΩϕZ : ΩZ

∼−→ ΩZ ′ are weak
homotopy equivalences. The induced map of fibrations

ΩZ

ΩϕZ∼
��

// X ×h
Z Y

ϕP

��

(pX ,pY )
// X × Y

ϕX×ϕY∼
��

ΩZ ′ // X ′ ×h
Z′ Y

′
(pX′ ,pY ′ )

// X ′ × Y ′

exhibits ϕP as a weak homotopy equivalence.
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