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The notion of cofiber sequence is dual to that of fiber sequence. Most constructions and state-
ments about fiber sequences readily dualize to cofiber sequences, though there are differences
to be mindful of.

1. Fiber sequences were defined in the category of pointed spaces Top∗, so that taking the
strict fiber (i.e. preimage of the basepoint) makes sense. No such restriction exists for
cofiber sequences. There are two different notions: unpointed cofiber sequences in Top
and pointed cofiber sequences in Top∗.

2. Fiber sequences induce long exact sequences in homotopy, whereas cofiber sequences
induce long exact sequences in (co)homology. Therefore the behavior of cofiber sequences
with respect to weak homotopy equivalences is a more subtle point.

Warning 0.1. In these notes, we introduce a non-standard notation with ∗ for pointed notions.
In the future, as in most of the literature, we will drop the ∗ from the notation and rely on the
context to distinguish between pointed and unpointed notions.

1 Definitions

Definition 1.1. The unreduced cylinder on a space X is the space X × I.

Note that the inclusion of the base of the cylinder ι0 : X ↪→ X × I is a cofibration, as well as a
homotopy equivalence.

Definition 1.2. The reduced cylinder on a pointed space (X, x0) is the pointed space X∧I+ =
X × I/({x0} × I).

If (X, x0) is well-pointed, then the inclusion ι0 : X ↪→ X ∧ I+ is a cofibration; it is always a
pointed homotopy equivalence.

If (X, x0) is well-pointed, then the quotient map X × I � X ∧ I+ is a homotopy equivalence.
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Definition 1.3. Let f : X → Y be a map between spaces. The unreduced mapping cylinder
of f is the space

M(f) = Y ∪X (X × I) = Y q (X × I)/(x, 0) ∼ f(x)

or in other words, the pushout in the diagram

X

f

��

ι0
// X × I

��

Y // M(f)
p

in Top.

The “inclusion at the top of the cylinder” ι1 : X ↪→M(f) is always a cofibration.

Definition 1.4. Let f : (X, x0) → (Y, y0) be a pointed map between pointed spaces. The
reduced mapping cylinder of f is the pointed space

M∗(f) = Y ∪X (X ∧ I+) = Y q (X ∧ I+)/(x, 0) ∼ f(x),

in other words the pushout in the diagram

X

f

��

ι0
// X ∧ I+

��

Y // M∗(f)
p

in Top∗ (or equivalently in Top).

If (X, x0) is well-pointed, then the map ι1 : X ↪→M∗(f) is a cofibration.

The two kinds of mapping cylinder are related as follows:

M∗(f) = M(f)/({x0} × I) .

If (X, x0) is well-pointed, then the quotient map M(f)�M∗(f) is a homotopy equivalence.

Exercise 1.5. Let C be a complete and cocomplete category, A an object of C, and (A ↓ C) the
category of objects under A, also called “coslice category” or “comma category”.

1. Show that (A ↓ C) is complete and that limits in (A ↓ C) are the same as in C. More
precisely, the forgetful functor U : (A ↓ C)→ C preserves limits.

2. Show that (A ↓ C) is cocomplete and that colimits in (A ↓ C) are computed as the colimit
of the associated diagram in C with the map A→ Xj to each object Xj.
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3. Deduce from (1) that Top∗ is complete, and limits in Top∗ are the same as in Top, which
we had already proved using the adjunction

(−)+ : Top� Top∗ : U.

4. Deduce from (2) that Top∗ is cocomplete, and colimits in Top∗ are computed as the
colimit of the associated diagram in Top with the inclusion of the basepoint ∗ ↪→ Xj of
each pointed space Xj in the diagram.

5. Deduce from (4) that coproducts in Top∗ are given by the wedge sum:

∐
j∈J

(Xj, xj) =
∨
j∈J

Xj =

(∐
j∈J

Xj

)
/{xj | j ∈ J}.

6. Deduce from (4) that pushouts in Top∗ are the same as in Top. In other words, the
pushout of the diagram

(W,w0)

f

��

g
// (Y, y0)

(X, x0)

in Top∗ is the space X q Y /f(w) ∼ g(w) for all w ∈ W , with basepoint x0 ∼ y0.

Definition 1.6. Let X be a space. The unreduced cone on X is the space

CX = X × I/(X × {1}) .

Note that the inclusion of the base of the cone ι0 : X ↪→ CX is always a cofibration. In fact,
up to reversing the interval I, the map ι0 : X ↪→ CX is the map obtained when replacing the
map X → ∗ by a cofibration.

Definition 1.7. Let (X, x0) be a pointed space. The reduced cone on X is the pointed space

C∗X = X ∧ I+/X × {1} = CX/({x0} × I) .

If (X, x0) is well-pointed, then the inclusion of the base of the cone ι0 : X ↪→ C∗X is a cofibration.

The two kinds of cones are related as follows:

C∗X = CX/{x0} × I.

If (X, x0) is well-pointed, then the quotient map CX � C∗X is a homotopy equivalence.

Definition 1.8. Let f : X → Y be a map between spaces. The unreduced mapping cone (or
cofiber or homotopy cofiber) of f is the space

C(f) = M(f)/X × {1} = Y ∪X CX
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which is the pushout in the diagram

X
� _

ι0
��

f
// Y

��

CX // C(f)
p

in Top. Note in particuliar that the map i : Y → C(f) is automatically a cofibration.

The sequence X
f−→ Y

i−→ C(f) is called an unpointed cofiber sequence.

Remark 1.9. The “homotopy cofiber” is obtained by first replacing f : X → Y by a cofibration
using the mapping cylinder ι1 : X ↪→M(f) and then taking the “strict cofiber”, i.e. quotienting
out the image

C(f) = M(f)/ι1(X) = M(f)/X × {1}.
Remark 1.10. Technically, in the category of Hausdorff spaces or CGWH spaces, the “strict
cofiber” is given by quotienting out the closure of the image. This does not affect remark 1.9:
in the category of CGWH spaces, every cofibration is closed.

Example 1.11. Let f : Sn−1 → X be a map. The space obtained from X by attaching an n-cell
using f as attaching map is the cofiber of f :

Sn−1 f−→ X ↪→ X ∪f en = C(f).

Attaching an arbitrary set of cells is obtained the same way. If {fj : Snj−1 → X}j∈J is a
collection of maps, then the space obtained from X by attaching cells with those attaching
maps fj is the cofiber

∐
j∈J S

nj−1
f=(fj)j∈J

// X � � // X ∪f
⋃
j∈J e

nj = C(f).

Definition 1.12. Let f : (X, x0) → (Y, y0) be a map between pointed spaces. The reduced
mapping cone (or cofiber or homotopy cofiber) of f is the space

C∗(f) = M∗(f)/X × {1} = Y ∪X C∗X

which is the pushout in the diagram

X
� _

ι0
��

f
// Y

��

C∗X // C∗(f)
p

in Top∗ (or equivalently, in Top). If (X, x0) is well-pointed, then the map ι0 : X → C∗X is a
cofibration, and so is i : Y → C∗(f).

The sequence X
f−→ Y

i−→ C∗(f) is called a pointed cofiber sequence.
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2 Basic properties

Proposition 2.1. Let Z be a space and g : Y → Z a map between spaces. Consider the
extension problem

X
f
// Y

g !!

i
// C(f)

g̃
��

Z

in Top. Then extensions g̃ : C(f) → Z of g correspond bijectively to null-homotopies of the
composite gf : X → Z. In particular, an extension exists if and only if the restriction gf is
null-homotopic.

Proof. Consider the pushout diagram defining C(f). Extensions of g

X

ι0
��

f
// Y

i
�� g

��

CX //

H
22

C(f)
p

g̃

!!

Z

correspond to maps H : CX → Z making the diagram above commute, i.e. satisfying ι0 ◦H =
gf . These are precisely null-homotopies of gf .

Remark 2.2. If (Z, z0) is pointed and we use the “vertex of the cone” as basepoint for C(f), then
pointed extensions g̃ : C(f) → Z of g correspond bijectively to homotopies of the composite
gf : X → Z to the null map (i.e. constant with value z0).

The same argument proves the pointed analogue.

Proposition 2.3. Let Z be a pointed space and g : Y → Z a pointed map between pointed
spaces. Consider the extension problem

X
f
// Y

g ""

i
// C∗(f)

g̃
��

Z

in Top∗. Then extensions g̃ : C∗(f)→ Z of g correspond bijectively to pointed null-homotopies
of the composite gf : X → Z. In particular, an extension exists if and only if the restriction
gf is pointed null-homotopic.
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The particular case of the statement can be reinterpreted as follows.

Corollary 2.4. For any pointed space Z, applying the functor [−, Z]∗ : Top∗ → Set∗ to the

pointed cofiber sequence X
f−→ Y

i−→ C∗(f) yields

[C∗(f), Z]∗
i∗

// [Y, Z]∗
f∗

// [X,Z]∗

which is an exact sequence of pointed sets.

In fact, this statement is the π0 shadow of a stronger statement at the level of mapping spaces.

Proposition 2.5. Let f : X → Y be a map between spaces, and Z any space. Then apply-
ing the functor Map(−, Z) : Top → Top to the mapping cylinder M(f) yields the path space
construction on the induced (restriction) map f ∗ : ZY → ZX .

Moreover, the homeomorphism ZM(f) ∼= P (f ∗) is compatible with the usual cofibration - homo-
topy equivalence factorization

X
ι1−→M(f)

p−→ Y

so that applying Map(−, Z) to the latter yields the usual homotopy equivalence - fibration fac-
torization

ZY i−→ P (f ∗)
ev1−−→ ZX .

Proof. Recall that the mapping cylinder M(f) is the pushout Y ∪f X × I, and that Map(−, Z)
sends coproducts to products in an enriched sense. Thus we obtain the homeomorphism

Map (M(f), Z) = Map (Y ∪f X × I, Z)

∼= Map (Y, Z)×f∗ Map (X × I, Z)

∼= Map (Y, Z)×f∗ Map
(
I, ZX

)
= ZY ×f∗ (ZX)I

= P (f ∗).

Via this homeomorphism, the dual of “inclusion at 1” ι1 : X → M(f) is “evaluation at 1”
ev1 : ZM(f) ∼= P (f ∗) → ZX . The dual of “collapsing the mapping cylinder” p : M(f) → Y is
“embedding constant paths” i : ZY → ZM(f) ∼= P (f ∗).

Remark 2.6. The homeomorphism ZM(f) ∼= P (f ∗) was the key ingredient in showing that
applying Map(−, Z) to a cofibration i : A→ X yields a fibration i∗ : ZX → ZA.

There is a pointed analogue of proposition 2.5.

Proposition 2.7. Let f : X → Y be a pointed map between pointed spaces, and Z any pointed
space.
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1. Applying the functor Map∗(−, Z) : Top∗ → Top∗ to the reduced mapping cylinder M∗(f)
yields the path space construction on the induced (restriction) map f ∗ : ZY → ZX .

Moreover, the homeomorphism ZM∗(f) ∼= P (f ∗) is compatible with the usual factorization

X
ι1−→M∗(f)

p−→ Y , so that applying Map∗(−, Z) to the latter yields the usual factorization

ZY i−→ P (f ∗)
ev1−−→ ZX .

2. Applying Map∗(−, Z) to the reduced mapping cone C∗(f) yields (up to a sign in the interval
I) the homotopy fiber of the induced map F (f ∗), in a way that is compatible with the fiber
sequence. More precisely, applying Map∗(−, Z) to the pointed cofiber sequence

X
f−→ Y

i−→ C∗(f)

yields the fiber sequence

ZC∗(f)
i∗

// ZY
f∗

// ZX

F (f ∗).

p

<<

Proof. (1) Similar to the unpointed case, but using the natural homeomorphisms

Map∗ (X ∧ I+, Z) ∼= Map∗
(
I+, Z

X
)

∼= Map
(
I, ZX

)
.

(2) Recall that the reduced mapping cone C∗(f) is the pushout Y ∪f C∗X in Top∗, and the
reduced cone on X can be viewed as the smash product

C∗X = X ∧ I

where I is given the basepoint 1 ∈ I. Thus we obtain the homeomorphism

Map∗ (C∗(f), Z) = Map∗ (Y ∪f C∗X,Z)

∼= Map∗ (Y, Z)×f∗ Map∗ (C∗X,Z)

= Map∗ (Y, Z)×f∗ Map∗ (X ∧ I, Z)

∼= Map∗ (Y, Z)×f∗ Map∗
(
(I, 1), ZX

)
∼= Map∗ (Y, Z)×f∗ Map∗

(
(I, 0), ZX

)
= ZY ×f∗ P (ZX) where paths in ZX start at the basepoint

= F (f ∗).

Note: We flipped the interval I because of our convention that the path space consists of paths
that start at the basepoint.

Via this homeomorphism, the dual of the inclusion i : Y → C∗(f) is the natural projection
p : ZC∗(f) ∼= F (f ∗)→ ZY onto the “first factor” in the expression F (f ∗) ∼= ZY ×f∗ P (ZX).
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Thus, the exact sequence of pointed sets 2.4 can be viewed as the exact sequence obtained by
applying π0 (i.e. taking path components) to the fiber sequence

ZC∗(f) i∗−→ ZY f∗−→ ZX .

There is a canonical “quotient of the homotopy cofiber onto the strict cofiber” q : C(f) �
Y /f(X) defined by quotienting out the closure CX ⊆ C(f) = Y ∪f CX.

Proposition 2.8. If f : X → Y is a cofibration, then the canonical map q : C(f) � Y /f(X)
is a homotopy equivalence.

Proof. The natural map CX → C(f) = Y ∪f CX is a cofibration, being the pushout along
X → CX of the cofibration f : X → Y . Moreover, the cone CX is contractible. Therefore the
quotient map q : C(f)� C(f)/CX is a homotopy equivalence (c.f. Hatcher Proposition 0.17).

Since we are working in CGWH spaces, f(X) ⊆ Y is necessarily closed in Y . To conclude, note
the homeomorphism C(f)/CX ∼= Y /f(X).

Remark 2.9. The reduced mapping cone C∗(f) is rarely a cokernel of f in the homotopy category
Ho(Top∗).

Exercise 2.10. Consider the “multiplication by 2” map f : S1 → S1. For instance, viewing
S1 ⊂ C as the unit circle in the complex plane, the map f can be realized as f(z) = z2.

Show that the map f does not admit a cokernel in Ho(Top∗).

Remark 2.11. This shows in particular that Ho(Top∗) is not cocomplete, though it does have
all small coproducts, which are given by the wedge sum as in Top∗.
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3 Homotopy invariance

Note that taking the (unreduced) cofiber is functorial in the input f : X → Y , i.e. is a functor
Arr(Top) → Top from the arrow category of Top, and such that the map Y → C(f) is a
natural transformation. Thus, a map of diagrams

ϕ :
(
X

f−→ Y
)
→
(
X ′

f ′−→ Y ′
)
,

which is a (strictly) commutative diagram in Top

X

ϕX

��

f
// Y

ϕY

��

X ′

f ′

// Y ′

(1)

induces a map between cofibers ϕC : C(f)→ C(f ′) making the diagram

X

ϕX

��

f
// Y

ϕY

��

i
// C(f)

ϕC

��

X ′

f ′

// Y ′

i′

// C(f ′)

(2)

in Top commute. Moreover, this assignment preserves compositions (as in “stacking another
square” below the left-hand square).

The analogous statements holds for the reduced cofiber C∗(f).

Let us study to what extent the cofiber is a homotopy invariant construction.

Proposition 3.1. Consider a map of diagrams

ϕ :
(
X

f−→ Y
)
→
(
X ′

f ′−→ Y ′
)

in Top.

1. If ϕ is an objectwise homotopy equivalence, i.e. both maps ϕX : X
'−→ X ′ and ϕY : Y

'−→ Y ′

are homotopy equivalences, then the induced map on unreduced cofibers ϕC : C(f)→ C(f ′)
is also a homotopy equivalence.

2. If ϕ is an objectwise weak homotopy equivalence, i.e. both maps ϕX : X
∼−→ X ′ and

ϕY : Y
∼−→ Y ′ are weak homotopy equivalences, then the induced map on cofibers ϕC : C(f)→

C(f ′) is also a weak homotopy equivalence.
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Proof. (1) Dualize the proof of the analogous statement for homotopy fibers.

(2) Trickier. We will come back to it.

Remark 3.2. Proposition 3.1 holds more generally for homotopy pushouts.

The pointed analogues also hold, for similar reasons.

Proposition 3.3. Consider a map of diagrams

ϕ :
(
X

f−→ Y
)
→
(
X ′

f ′−→ Y ′
)

in Top∗.

1. If ϕ is an objectwise pointed homotopy equivalence, i.e. both maps ϕX : X
'−→ X ′ and

ϕY : Y
'−→ Y ′ are pointed homotopy equivalences, then the induced map on reduced cofibers

ϕC : C∗(f)→ C∗(f
′) is also a pointed homotopy equivalence.

2. If ϕ is an objectwise weak homotopy equivalence, i.e. both maps ϕX : X
∼−→ X ′ and

ϕY : Y
∼−→ Y ′ are weak homotopy equivalences, then the induced map on reduced cofibers

ϕC : C∗(f)→ C∗(f
′) is also a weak homotopy equivalence.
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4 Iterated cofiber sequence

Proposition 4.1. Consider the cofiber sequence X
f−→ Y

i−→ C(f). Then the quotient map
ϕ : C(i) � SX of the homotopy cofiber of i onto its strict cofiber is a homotopy equivalence
making the following diagram commute:

X
f
// Y

i
// C(f)

q
//

i′ ""

SX

C(i)

ϕ'

OO

where q : C(f)� SX ∼= C(f)/i(Y ) is the quotient map.

Proof. The strict cofiber of i is the quotient

C(f)/i(Y ) = (Y ∪f CX)/Y = CX/(X × {0}) ∼= SX

which is the unreduced suspension of X. By construction, the composite ϕ ◦ i′ : C(f)→ SX is
the quotient map q.

The quotient map ϕ : C(i)� SX is a homotopy equivalence, since i is a cofibration (and using
2.8).

In light of the proposition, the sequence Y → C(f) → SX is sometimes also called a cofiber
sequence.

Proposition 4.2. Consider the pointed cofiber sequence X
f−→ Y

i−→ C∗(f) and assume X is
well-pointed. Then the quotient map ϕ : C∗(i)� ΣX of the homotopy cofiber of i onto its strict
cofiber is a pointed homotopy equivalence making the following diagram commute:

X
f
// Y

i
// C∗(f)

q
//

i′ ##

ΣX

C∗(i)

ϕ'

OO

where q : C∗(f)� ΣX ∼= C∗(f)/i(Y ) is the quotient map, and ΣX denotes the reduced suspen-
sion of X.

For the purposes of iterating the cofiber construction, we will focus on the pointed case. Also
assume that X and Y are well-pointed.
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Proposition 4.3. The following triangle

ΣX
−Σf

// ΣY

C∗(i)

ϕ'

OO

q′

<<

commutes up to homotopy. Here, the map q′ : C∗(i)→ ΣY is the quotient map

C∗(i) = C∗(f) ∪i C∗Y � (C∗(f) ∪i C∗Y )/C∗(f) ∼= C∗Y /(Y × {0}) ∼= ΣY.

See May § 8.4 for more details.

Definition 4.4. The (long) cofiber sequence generated by a pointed map f : X → Y between
well-pointed spaces is the sequence

X
f−→ Y

i−→ C∗(f)
q−→ ΣX

−Σf−−→ ΣY
−Σi−−→ ΣC∗(f)

−Σq−−→ Σ2X
Σ2f−−→ Σ2Y → . . . (3)

where i : Y → C∗(f) and q : C∗(f)→ ΣX are defined above.

Such a sequence is sometimes called a Puppe sequence.

Proposition 4.5. Let f : X → Y be a pointed map, and Z any pointed space. Then applying
the functor [−, Z]∗ : Top∗ → Set∗ to the cofiber sequence generated by f yields

. . .→ [Σ2X,Z]∗ → [ΣC∗(f), Z]∗ → [ΣY, Z]∗ → [ΣX,Z]∗ → [C∗(f), Z]∗ → [Y, Z]∗ → [X,Z]∗

which is a long exact sequence of pointed sets.

Proof. By 4.2 and 4.3, each consecutive three spots of the long cofiber sequence form, up to
homotopy equivalence, a pointed cofiber sequence. The result follows from 2.4.

Note that [ΣX,Z]∗ is naturally a group and [Σ2X,Z]∗ is naturally an abelian group.

The following proposition is not a consequence of 4.5, but realizes a familiar long exact sequence
topologically.

Proposition 4.6. Let i : A→ X be a pointed map between well-pointed spaces. Then applying
reduced homology H̃n(−) to the cofiber sequence generated by i yields, up to signs, the long exact
sequence in homology

H̃n(A)
i∗−→ H̃n(X)

j∗−→ H̃n(X,A)
∂−→ H̃n−1(A)

i∗−→ H̃n−1(X)→ . . . (4)

In particular, taking n large enough, one recovers the entire long exact sequence of the pair
(X,A).
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Proof. For a well-pointed space X, one has the suspension isomorphism H̃k(X) ∼= H̃k+1(ΣX)
for all k ≥ −1. Moreover, since i is a pointed map between well-pointed spaces, the relative
homology groups are H̃k(X,A) ∼= H̃k(C∗(i)). The long exact sequence of the “good pair”
(M∗(i), A) (c.f. Hatcher Theorem 2.13) coincides with the usual long exact sequence (4) of the
pair (X,A), up to signs.

Proposition 4.7. Let i : A → X be a pointed map between well-pointed spaces. Then there is
a long exact sequence in reduced cohomology

. . .→ H̃n−1(A;M)
d−→ H̃n(X,A;M)

j∗−→ H̃n(X;M)
i∗−→ H̃n(A)

d−→ H̃n+1(X,A;M)→ . . .

with coefficients in any abelian group M .

Proof. Reduced cohomology H̃n(−;M) is represented (at least for spaces with the homotopy
type of a CW-complex) by the Eilenberg-MacLane space K(M,n), that is:

H̃n(X;M) ∼= [X,K(M,n)]∗.

Applying the functor [−, K(M,n)]∗ to the cofiber sequence generated by i : A → X yields a
long exact sequence

. . .→ [ΣX,K(M,n)]∗ → [ΣA,K(M,n)]∗ → [C∗(i), K(M,n)]∗ → [X,K(M,n)]∗ → [A,K(M,n)]∗.
(5)

Now use the natural isomorphism

[ΣX,K(M,n)]∗ ∼= [X,ΩK(M,n)]∗

and the equivalence
ΩK(M,n) ' K(M,n− 1)

for n ≥ 1 and ΩK(M, 0) ' ∗.

For a well-pointed space X, one has the suspension isomorphism H̃k(X;M) ∼= H̃k+1(ΣX;M)
for all k ≥ −1. Moreover, since i : A → X is a pointed map between well-pointed spaces, the
relative cohomology groups are H̃k(X,A;M) ∼= H̃k(C∗(i);M). Taking n large enough, the long
exact sequence (5) yields the long exact sequence in the statement.

Note that the long exact sequence (5) coincides with the usual long exact sequence of a pair,
up to certain signs of the maps.
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