Math 527 - Homotopy Theory Additional notes

Martin Frankland

February 11, 2013

1 Well-pointed spaces

Definition 1.1. A pointed space (X, x_0) is well-pointed or non-degenerately based if the inclusion of the basepoint $\{x_0\} \hookrightarrow X$ is a cofibration.

Example 1.2. Any CW-complex based at a 0-cell is well-pointed.

Non-example 1.3. The space $X = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{N}\} \subset \mathbb{R}$ based at 0 is not well-pointed.

Proposition 1.4. Let $f: (X, x_0) \to (Y, y_0)$ be a map (not necessarily pointed) between wellpointed spaces. If $f(x_0)$ is in the path component of y_0 , then f is homotopic to a pointed map. Moreover, the homotopy $H: X \times I \to Y$ can be chosen so that its restriction to $\{x_0\} \times I$ is any prescribed path in Y from $f(x_0)$ to y_0 .

Proof. Let $\gamma: I \to Y$ be a path from $f(x_0)$ to y_0 . Consider the map $f: X \to Y$, and the homotopy of its restriction to the basepoint $\{x_0\} \times I \cong I \xrightarrow{\gamma} Y$. Since the inclusion $\{x_0\} \hookrightarrow X$ is a cofibration, this homotopy can be extended to $\widetilde{H}: X \times I \to Y$. Thus $f = \widetilde{H}_0$ is homotopic to \widetilde{H}_1 , which is a pointed map:

$$\widetilde{H}_1(x_0) = \widetilde{H}(x_0, 1) = \gamma(1) = y_0.$$

Lemma 1.5. Let $i: (A, a_0) \to (X, x_0)$ be a pointed map between well-pointed spaces. If i is a based cofibration, then the map $i \times id: A \times I \to X \times I$ is a based cofibration.

Here, the basepoint of I is, say, 0, so that $A \times I$ has basepoint $(a_0, 0)$ and $X \times I$ has basepoint $(x_0, 0)$.

Proposition 1.6. Let $i: (A, a_0) \to (X, x_0)$ be a pointed map between well-pointed spaces. If i is a based cofibration, then i is also an unbased cofibration.

Proof. Consider the lifting problem

$$\begin{array}{cccc} A & \stackrel{H}{\longrightarrow} & Y^{I} \\ i & \downarrow & & \downarrow \\ i & \downarrow & & \downarrow \\ X & \stackrel{H}{\longrightarrow} & Y \\ X & \stackrel{H}{\longrightarrow} & Y \end{array}$$

where $f: X \to Y$ is an arbitrary map. The space Y does not come with a specified basepoint, so we choose $y_0 := f(x_0)$ as basepoint. Then $f: X \to Y$ is a pointed map, though $H: A \to Y^I$ is (usually) not.

Changing H to a pointed map. Note that $H(a_0) \in Y^I$ is a path starting at y_0 :

$$H(a_0)(0) = (ev_0 \circ H)(a_0) = (f \circ i)(a_0) = f(x_0) = y_0.$$

Consider a path $\Gamma: I \to Y^I$ from $H(a_0)$ to c_{y_0} , the constant path at y_0 (which is the basepoint of Y^I), where $\Gamma(s)$ always starts at y_0 . For example, one could shrink $H(a_0)$ using the formula $\Gamma(s)(t) = H(a_0)((1-s)t)$.

Applying proposition 1.4 to the map $H: A \to Y^I$ and the path Γ , one obtains a homotopy $\widetilde{H}: A \times I \to Y^I$ satisfying:

$$H(a,0) = H(a)$$
 for all $a \in A$
 $\widetilde{H}(a_0,-) = \Gamma$
 $\widetilde{H}(-,1) \colon A \to Y^I$ is pointed.

Writing $G(a, s, t) := \widetilde{H}(a, s)(t)$, we obtain a map $G: A \times I \times I \to Y$ satisfying the three conditions:

$$G(a,0,t) = H(a)(t) \tag{1}$$

$$G(a_0, s, 0) = y_0 \text{ for all } s \in I$$

$$\tag{2}$$

$$G(a_0, 1, t) = y_0 \text{ for all } t \in I.$$
(3)

Condition (2) says that the map $F: A \times I \to Y$ defined by F(a, s) = G(a, s, 0), i.e. $F = ev_0 \circ \widetilde{H}$, is a pointed homotopy. Moreover, it satisfies F(a, 0) = f(i(a)). Since *i* is a based cofibration, the pointed homotopy F can be extended to a (pointed) homotopy $\widetilde{F}: X \times I \to Y$ satisfying $\widetilde{F}(x, 0) = f(x)$ for all $x \in X$. In other words, there is a lift \widetilde{F} in the diagram

Recovering *H*. Viewing \widetilde{F} as a map $\widetilde{F}: X \times I \to Y$ and taking the basepoint $(x_0, 1) \in X \times I$, note that this map is pointed:

$$\widetilde{F}(x_0, 1) = \widetilde{F}(i(a_0), 1) = F(a_0, 1) = y_0.$$

Now think of $s \in I$ as a "space parameter" and $t \in I$ as a "time parameter", so that the map

$$G\colon (A\times I)\times I\to Y$$

is a homotopy starting at G(-, -, 0) = F. This homotopy G is pointed, by condition (3), using $(a_0, 1) \in A \times I$ as basepoint. By lemma 1.5, the pointed homotopy G can be extended to a (pointed) homotopy $\widetilde{G} \colon X \times I \times I \to Y$ satisfying $\widetilde{G}(x, s, 0) = \widetilde{F}(x, s)$.

At s = 0, $\widetilde{G}(-, 0, -)$ provides the desired extension of H:

$$\tilde{G}(i(a), 0, t) = G(a, 0, t) = H(a)(t)$$

while agreeing with the original map $f: X \to Y$ at t = 0:

$$\widetilde{G}(x,0,0) = \widetilde{F}(x,0) = f(x)$$

Proposition 1.7. Let $f: (X, x_0) \to (Y, y_0)$ be a pointed map between well-pointed spaces. If f is a homotopy equivalence, then f is also a pointed homotopy equivalence.