Math 527 - Homotopy Theory Additional notes

Martin Frankland

January 16, 2013

1 Group objects

Definition 1.1. Let C be a category with finite products, including a terminal object 1. A **group object** in C is an object G of C together with structure maps

$$\begin{split} \mu \colon G \times G \to G \quad \text{``multiplication''} \\ e \colon 1 \to G \quad \text{``unit''} \\ i \colon G \to G \quad \text{``inverse''} \end{split}$$

such that the following diagrams commute:

(Right inverse)

where $e_G \colon G \to G$ is the composite $X \to 1 \xrightarrow{e} X$.

Example 1.2. A group object in the category **Set** is just a group.

Notation 1.3. The category of group objects in C is denoted $\mathbf{Gp}(C)$. Morphisms of group objects are morphisms in C that commute with the structure maps.

There is the forgetful functor $U: \mathbf{Gp}(\mathcal{C}) \to \mathcal{C}$ which remembers the underlying object but forgets the structure maps.

Proposition 1.4. Let C be a locally small category with finite products, including a terminal object. Let G be a group object in C. Then for any object X of C, the hom-set $Hom_{\mathcal{C}}(X,G)$ is naturally a group.

In other words, the structure maps of G induce a group structure on $\operatorname{Hom}_{\mathcal{C}}(X,G)$, and this assignment

$$\operatorname{Hom}_{\mathcal{C}}(-,G)\colon \mathcal{C}^{\operatorname{op}}\to \mathbf{Gp}$$

is a functor.

Proof. Homework 1 Problem 2.

Remark 1.5. Several authors define a group object in an arbitrary locally small category \mathcal{C} as an object G of \mathcal{C} together with a lift of the functor $\operatorname{Hom}_{\mathcal{C}}(-,G): \mathcal{C}^{\operatorname{op}} \to \operatorname{Set}$ to groups, as illustrated in the diagram

This definition becomes equivalent to Definition 1.1 when C has finite limits.

2 Cogroup objects

Definition 2.1. Let C be a category with finite coproducts, including an initial object \emptyset . A cogroup object in C is a group object in the opposite category C^{op} .

More explicitly, it consists of an object C of C equipped with a comultiplication $C \to C \amalg C$, counit $C \to \emptyset$, and coinverse $C \to C$, satisfying coassociativity, etc.

Example 2.2. The only cogroup object in **Set** (or in **Top**) is the empty set \emptyset , because it is the only object C admitting a map $C \to \emptyset$ to the empty set, which is the initial object.

Definition 2.3. A homotopy group object in C = Top or Top_* (or any category with a good notion of homotopy between maps) is defined like a group object, except that the diagrams are only required to commute up to homotopy.

In particular, a homotopy group object in \mathcal{C} becomes a group object in the homotopy category $Ho(\mathcal{C})$.

A homotopy cogroup object in C is defined similarly.