
THE DOLD-THOM THEOREM

THOMAS BARNET-LAMB

Abstract. We give a proof of the Dold-Thom theorem, following Hatcher [3]. This states
that for a connected CW complex X, Hi(X) ∼= πi ◦ SP (X). Here SP is a functor which we
introduce, which arises naturally from both a geometric and categorical perspective, as we
discuss. A brief discussion as to the significance of the result for deeper developments is given.

1. Introduction

If challenged to give a description of what the subject of algebraic topology ‘is about’, then
(at least at an elementary level) one could do a lot worse than:

Algebraic topology is the study of functors F (both covariant and contravariant)
from Top (the category of topological spaces and continuous maps) to some
‘algebraic category’, normally the category Grp of groups, which have the key
property of homotopy invariance; if f, g : X → Y are parallel morphisms which
are homotopic, then Ff = Fg.

It is then a commonplace (again, at least at the elementary level) that there are two major
families of such functors, which are as different as chalk and cheese. On the one hand there
are the homotopical functors π0, π1, π2, . . . which generalise the fundamental group π1: easy
to define, and apparently encoding much deep information about the space, but still (after 50
years of study) almost impossible to calculate in any real generality. On the other hand, the
homological functors H0, H1, H2, . . . and cohomological functors H0, H1, H2, . . . , which while
trickier to define than the homotopical functors, and possibly yielding slightly less information
about the deep structure of the space concerned, have the enormous practical advantage of being
computable, through the paraphernalia of long exact sequences (attached to pairs and of the
Mayer-Vietoris kind) and excision isomorphisms.

Unsurprisingly, considerable interest has grown in connections between these twin pillars of
the theory. There is, of course, the Hurcewicz theorem, which tells us that, if the first nonzero
homotopy group of positive degree d has d > 1, then it is isomorphic to the homology group of
the same degree. One can also give a construction of cohomology using homotopical ideas: rather
than looking at homotopy classes of maps from a fixed space (normally a sphere) into a varying
space X (which gives π∗(X)), one can fix some space Y0, and for a space X consider homotopy
classes of maps from X to Y0. Under appropriate conditions on Y0, this will be a group, and
it turns out that for a particular natural family of Y0s (the K(G, i)), one recovers the ‘usual’
cohomology groups. (It also turns out, after significantly more work, that every cohomology
theory arises in this way, for a particular family of Y0s).

There is also the beautiful theory that has grown up around the Freudenthal suspension
theorem. This allows one to define a process called ‘stabilisation’, which makes homotopy groups
more well-behaved, and it turns out that the theory you get by taking homotopy and applying
this process, so-called ‘stable homotopy’ is actually a homology theory (albeit one which is still
not computable in generality).

One thing that is missing from this list is a way of reducing homology to homotopy. The Dold-
Thom theorem, which is the subject of this essay, provides just such a connection: and it turns
out that the connection which emerges is surprisingly beautiful. To state it, we must introduce
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the functor SP . For the present, we will just state this is a functor Top∗ → Top∗, which arises
naturally from both geometric and category theoretic perspectives. (A full discussion will be
given in section 2). Then for any connected CW-complex X , we have

Theorem 1 (The Dold-Thom theorem). There is an isomorphism Hi(X) ∼= πi ◦ SP (X). (To
apply SP to X we must give it a basepoint; but any basepoint will do.)

The Dold-Thom is not, however, merely of interest as a technical curio connecting homology
and homotopy theory. Recent developments have given it a much deeper significance. Let us
pause for a while to examine what this significance is. To start with, it turns out that, using this
theorem as a centerpiece, pretty much all of traditional homology theory can be set up without
recourse to any of the standard foundations (singular, simplicial, cellular, Cech, Alexander,
sheaves and derived functors, etc.): thus homotopy theory, via the Dold-Thom theorem, forms
another possible foundation for homology theory (see [1] for a complete exposition of the theory,
including more advanced topics like K-theory, from this viewpoint). This, of course, is not an
earth-shattering discovery per se; homology theory already has an embarrassment of potential
foundations (we’ve just listed six limiting ourselves to ones that might be regarded as ‘standard’).
Indeed a reasonable amount of work in the subject is devoted to establishing the various theorems
that show that these disparate foundations in fact calculate the same object, at least for nice
spaces. (When the first few equivalent foundations were discovered, it was very interesting that
these seemingly-completely-different constructions were calculating the same thing, but now ‘yet
another foundation’ is not news.)

The key point, which renders the homotopical construction of homology more than ‘just
another’ construction, is its relevance to algebraic geometry. There has, for some time, been a
desire to allow one to use the tools of algebraic topology in the study of algebraic geometry: if
and when they can be made to apply, they often provide important insights into what is going
on, and tools for proving other important results. However, most of the ‘foundations’ of algebraic
topology are not at all applicable to the algebraic geometric case. Of the ‘standard’ foundations,
only the the (sheaf theoretic) Cech and derived functor approaches have any analogue, and
while study of these analogues is an absolutely central tool in the study of algebraic geometry,
the analogy is not so close as one might hope. For instance, a curve of genus g, over C, can
also be realised as a Riemann surface, which is a topological object whose cohomology groups
are of considerable interest. But alas, if you try and compute the analogous groups using the
algebraic analogue of the theory, all the groups turn out to be zero, and therefore less interesting!
(Indeed, this led to the construction of étale cohomology, a foundation for cohomology in algebraic
geometry which has no analogues, in terms of how it is constructed, on the topological side, but
which at least gives ‘the right answer’, roughly speaking, compared to C, for the cohomology of
curves.

Thus there is considerable interest in other foundations for homology which have algebraic
analogues ; and it turns out that the homotopical foundation, building from Dold-Thom, has
a strong algebraic analogue. Voevodsky (with others) has translated many of the concepts of
algebraic topology into this context. This allowed Voevodsky to prove the Milnor conjecture,
which concerns a certain relationship between the Galois cohomology groups of a field F and
Milnor’s K theory groups of F . For more information, see the introduction to [1]. While we will
not explore these connections in this essay, focusing on the topological context, it is hoped that
explaining this connection gives some motivation for the result.

We turn now to some brief notes on the literature. Dold and Thom originally published their
result in German ([2]). I have managed to track down only two secondary sources. First is
Hatcher’s omnibus work on Algebraic Topology ([3]) which covers the Dold-Thom theorem as
part of its aim to be ‘a background reference for many additional topics’ which do not fit into a
normal Algebraic Topology course. Second is the work Algebraic Topology from a Homotopical
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Viewpoint, [1]. As we have already mentioned, this work actually carries out, completely explic-
itly, the construction of all the concepts of homology (and cohomology) from the standpoint of
homotopy theory and SP , and along the way, essentially proves the Dold-Thom theorem1. It is
somewhat surprising that there are so few references for such an important theorem, but I am
not the only one to have searched for other references in vain: the authors of [1] mention that,
at the time of publication (2002—presumably just before Hatcher’s book, published the same
year!) their exposition is, so far as the authors know, the only one in the literature apart from
the original research announcement.

The rest of this essay is devoted to giving a proof of the Dold-Thom theorem 1, in the form
stated above. (Thus we do not phrase the result as [1] does, as a fully-worked out alternative
foundation for homology theory, since to do this properly, one really needs to explicate quite a
substantial portion of homology theory in the new context, which we do not have room for in
this essay!) In the proof itself, we shall essentially follow Hatcher, although we will occasionally
incorporate elements from [1]. There are a number of technical lemmas which are used in the
proof; Hatcher proves these first (which leaves one wondering for some time where the whole
thing is going), I will try the alternate approach of beginning with an analysis of the Dold-Thom
theorem, from which it will emerge that we could prove the theorem if we had these various
technical lemmas (and that, in some sense, they are the natural technical lemmas to prove and
use). Thus motivated as to their importance, we will proceed to prove the lemmas, and so finally
get a proof of the theorem.

2. The functor SP

We begin with a description of the functor SP . Suppose (X,x0) is a space-with-basepoint.
We construct the n-fold symmetric product of X (which we denote SPnX), as the quotient of the
space Xn (the n-fold power of X) by the action of the group Sn, acting by permutation of the
factors. We can embed Xn in Xn+1 by sending (p1, . . . , pn) 7→ (x0, p1, . . . , pn); it is clear that
this descends to give an embedding of SPn in SPn+1; by taking the direct limit of these spaces
(with the direct limit topology), we end up with the space SP (X). It has a natural basepoint:
the point with all components equal to x0

Thus, as a set, SP (X) is the same as the space you get by the following construction: take
the product of countably many copies of X ; quotient by the action of the symmetric group on
countably many generators, and then take the subspace in which all but finitely many compo-
nents are equal to x0. Unfortunately, this does not quite give the right topology on SP (X), but
if one carries out the standard construction of passing to the corresponding compactly generated
topology, then you do get the right topology, at least in the case of X finite.

It is clear that a map of spaces f : X → Y gives a map on SPkX → SPkY for all k in a
natural way; these are then compatible, and give a map SP (f) : SP (X)→ SP (Y ). Moreover,
a homotopy of maps f, g : (X,x0)→ (Y, y0) gives rise to a homotopy of the corresponding maps
on SPk and SP . Finally, it is clear that the construction is functorial; if f : X → Y and
g : Y → Z are maps, then the map induced on SP ’s by the composition g ◦ f is the same as the
composition SP (g) ◦SP (g). We summarise all this by saying that SP is a homotopy functor (a
functor sending homotopic maps to homotopic maps).

Another way of looking at the space SP (X), and one that perhaps gives a clearer picture of
what it is goes as follows. Recall the notion of the free group on a set. This, roughly speaking,
takes a set X and ‘turns it into a group’ in the ‘simplest’ way possible. More formally, ‘taking

1Of course, since their whole project is to set up homology theory without mentioning the usual construction
of H̃i, they do not prove a theorem of the form H̃∗ = π∗ ◦SP , rather taking this as the definition of H̃∗, at least
for connected complexes (there is a cunning way to extend to non-connected complexes, as we will see in due
course). But they do establish that π∗ ◦ SP satisfies all the usual axioms for a reduced homology theory, which

then by general theory automatically shows it coincides with any of the other frameworks on CW complexes.
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the free group’ is the unique functor F from Grp to Set which is left adjoint to the natural
forgetful functor U going the other way, in that for all groups G and sets S,

Set(S,UG) ∼= Grp(FS,G)

naturally in S and G, where the LHS is the collection of set maps from S to UG, and the RHS
is the collection of homomorphisms from FS to G.

Similarly, there is a natural forgetful functor U from AbTopMonoid, the category of abelian
topological monoids, to Top∗, the category of pointed topological spaces and basepoint preserv-
ing maps (the basepoint comes from the identity of the monoid). (A monoid is a like a group
except one drops the requirement that inverses exist: and similarly, topological monoids are like
topological groups without inverses.) It is possible to show that there is a functor F going the
other way which is left adjoint to this forgetful functor (indeed, by the end of this discussion it
should be clear how one might do this). This functor ‘takes the free abelian topological monoid’
on a given topological space.

What does this free abelian topological monoid FX look like, for a pointed space (X,x0). Let’s
first consider it merely as a set. Well, by analogy with free groups, an element α ∈ FX looks like
formal linear sums of elements ofX , say x1+x2+· · ·+xn (we write it as a sum since order doesn’t
matter). We then topologise it by saying that ‘small changes in any of the xi makes a small
change in the sum’; more formally, we use the finest possible topology consistent with the map
(x1, x2, . . . , xn) 7→ x1+x2+· · ·+xn being continuous. Finally, the monoid on FX structure comes
from juxtaposition: (x1+x2+· · ·+xn)+(x′1+x

′
2+· · ·+x′m) = x1+x2+· · ·+xn+x′1+x′2+· · ·+x

′
m.

Thus the subset of FX that can be written using fewer than n terms looks exactly like SPnX ,
at least as a topological space; taking the direct limit, we get that FX ’s underlying topological
space is precisely SP X ; that is, UFX = SP X . Thus another way of looking at SP is that
it is precisely the adjunction UF : Top∗ → Top∗ arising from the adjoint pair U,F . Since
free/forgetful pairs are very natural objects, this adjunction is very natural too. Now, an upshot
of this is that SP X has a natural structure as an abelian topological monoid (the structure
we forgot about using U). This structure will turn out to be very useful to us, and so we will
sometimes want to think of SP X as a monoid. We will thus abuse notation and sometimes
treat it as one.

We close this section with an example: we calculate, quite explicitly, the homotopy type of
SP (S1).

Theorem 2. We have that SP (S1) ' S1.

Proof: It is well known that S1 ' C\{0}, so that SP (S1) ' SP (C\{0}), and so it suffices to
show that SP (C\{0}) ' S1 (since SP is a homotopy functor). We first consider SPk(C\{0}).
This consists of k-tuples of nonzero complex numbers, disregarding order. Now, it is well known
that the space of k-tuples of complex numbers, disregarding order, but without the ‘nonzero’
restriction, is isomorphic (even topologically isomorphic) to Ck, the isomorphism being given by

C
k/Sk → C

k : (x1, . . . , xk) 7→ (s1(x1, . . . , xk), . . . , s1(x1, . . . , xk)) = (r1, . . . , rk) (say)

where the si are the elementary symmetric polynomials, so for example

s1(x1, . . . , xk) = x1 + · · ·+ xk; s2(x1, . . . , xk) =
∑

i<j

xixj ; and sk(x1, . . . , xk) = x1 . . . xk

(It is clear that the map is continuous, open, and it is a standard result of elementary algebra
that it has fibres precisely the orbits of Sn). Now, it is clear that rk = 0 iff at least one of the
xi is zero. Thus we can restrict to give a homeomorphism between the space SPk(C\{0}) of
k-tuples of non-zero complex numbers, disregarding order, with the space of k tuples of complex
numbers the last of which is not zero, and we have:

SPk(C\{0}) ∼= C
k−1 × C\{0}
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Now, the right hand side deformation retracts onto a subspace which is an S1 (say take the sub-
space (0, . . . , 0, t), |t| = 1 and use as deformation retraction a linear homotopy to the retraction
(x1, . . . , xn) 7→ (0, . . . , 0, xn/|xn|). So we deduce that SPk(C\{0}) ' S1.

Now, we would like to then say ‘these deformation retractions can be made compatible with
the inclusions SPk(C\{0})→ SPk+1(C\{0}), so we can pass to the limit and get a deformation
retraction of SP X to a subspace homeomorphic to S1’. This is more or less all Hatcher and
[1] say, but the matter involves a little subtlety (which makes it non-obvious that a consistent
choice can be made), so we shall be slightly more explicit.

The subtlety arises because the inclusion SPk(C\{0})→ SPk+1(C\{0}), when translated into
an inclusion Ck−1×C\{0} → Ck×C\{0} turns out to be a slightly more complicated map than
one might hope. In particular, it is the map

ιk : (r1, . . . , rk) 7→ (1 + r1, r1 + r2, . . . , rk−1 + rk, rk)

as can easily be checked2. Thus, for instance, if we make, as above, the natural choice of
(0, . . . , 0, t), |t| = 1 as our subspace homeomorphic to S1 in Ck−1×C\{0} onto which we want it to
retract, for each k, then we have a problem. For our subspace (0, . . . , 0, t), |t| = 1 in Ck−1×C\{0}
maps into Ck×C\{0} as (1, 0, . . . , 0, t, t), |t| = 1; so it does not map onto (0, 0, . . . , 0, 0, t), |t| = 1,
our chosen subset of Ck × C\{0}, as it should.

The problem turns out not to be too serious, however: we just need to be slightly careful in
our choices. Let us pick as our embedded S1 in Ck−1 × C\{0} the subspace Ek given by:

(

(

k−1
1

)

+
(

k−1
0

)

t,
(

k−1
2

)

+
(

k−1
1

)

t, . . . ,
(

k−1
k−2

)

+
(

k−1
k−3

)

t,
(

k−1
k−1

)

+
(

k−1
k−2

)

t,
(

k−1
k−1

)

t
)

: t ∈ C, |t| = 1

and pick as our deformation retraction a linear homotopy onto the retraction

ϕk : C
k−1 ×C\{0} → Ek : (x1, . . . , xk) 7→ (

(

k−1
1

)

+
(

k−1
0

) xk

|xk|
, . . . ,

(

k−1
k−1

)

+
(

k−1
k−2

) xk

|xk|
,
(

k−1
k−1

) xk

|xk|
)

Then it is easy to check that the maps ϕk are compatible with the inclusions ιk, in that ιk ◦ϕk =
ϕk+1 ◦ ιk, using standard binomial coefficient identities. In particular the coice of the Ek as our
embedded S1 is compatible with the ιk. Now, since the ιk are affine, and we pick homotopies
which are linear, the compatibility of the retractions ϕk with the ιk then implies that the
deformation retractions are also compatible with the ιk. So we do indeed get, passing to the
limit, a homotopy equivalence SP (C\{0}) ' lim−→Ek = S1 �

3. Proving Dold-Thom modulo some technical lemmas

The usual way of showing that some construction agrees with the usual homology functors
is to show that it satisfies the full Eilenberg-Steenrod axioms for a reduced homology theory,
including the dimension axiom; it then follows from a general theorem (which shows that the
axioms completely determine the homology of CW complexes) that the construction does just
give the ‘usual’ groups. Let us briefly remind ourselves what these axioms are. For a theory h,
we need:

(1) The hi are functors Top∗ → Grp, and satisfy homotopy invariance: if f ' g, then
h∗f = h∗g.

(2) There is a boundary map ∂ : hi(X/A)→ hi−1(A), defined for each pair (X,A) where A
is a subcomplex of X , such that there is an exact sequence

· · · → hi(A)→ hi(X)→ hi(X/A)→ hi−1(A)→ . . .

and satisfying appropriate naturality properties.

2Suppose we start with a tuple (x1, . . . , xk) ∈ Ck/Sk with corresponding tuple (r1, . . . , rk) ∈ Ck−1 × C\{0}.
This maps to the tuple (x1, . . . , xk, 1) ∈ Ck+1/Sk+1, whose corresponding element (r′1, . . . , r′

k+1
) ∈ Ck × C\{0}

satisfies r′i = si(x1, . . . , xk, 1) = si(x1, . . . , xk) + si−1(x1, . . . , xk) = ri + ri−1 for i 6= k + 1 and r′
k+1

=

sk+1(x1, . . . , xk, 1) = x1 . . . xk = sk(x1, . . . , xk) = rk.
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(3) We have hi(
∧

α Xα) ∼=
⊕

α hi(Xα)
(4) We have h0(S

0) = Z while hi(S
0) = 0 for i > 0.

This is what we will do, but with an additional wrinkle. The wrinkle arises because the
Dold-Thom theorem only holds for connected complexes X , whereas the axioms above need a
construction which works on all spaces X . Luckily, we can cunningly dodge this difficulty. The
idea that makes this possible is that for any based topological space X , the reduced suspension
ΣX is always a connected complex. Then, if Dold-Thom holds, we have πi+1 ◦ SPΣX =
Hi+1ΣX = HiX , so if we define h′i = πi+1 ◦ SP ◦Σ, then these ought to be homology functors,
so ought to satisfy the axioms. Turning this round, we can make one of our subgoals towards
proving Dold-Thom proving:

Lemma 3. The functors h′i = πi+1 ◦ SP ◦ Σ satisfy axioms 1-4. Thus, h′i
∼= Hi for all i.

Before we turn to the proof of lemma 3, let us see how we can use this to finish off the proof
of Dold-Thom. The other key ingredient is the following, which is a kind of version of axiom 2,
applied to the functors π∗ ◦ SP ; but restricted so it only talks about connected complexes (and
therefore has a chance of being true). This claim is also the natural statement one proves when
establishing the ‘axiom 2’ part of lemma 3, so in some sense it does not ‘come out of a hat’ as
much as it seems. (We shall soon see how this statement is used in the proof of lemma 3.):

Claim 4. There is a boundary map ∂ : πi ◦ SP (X/A) → πi−1 ◦ SP (A), defined for each pair
(X,A) where A is a connected subcomplex of X, which is also connected, such that there is an
exact sequence

· · · → πi ◦ SP (A)→ πi ◦ SP (X)→ πi ◦ SP (X/A)→ πi−1 ◦ SP (A)→ . . .

and satisfying appropriate naturality properties.

Now, suppose Y is connected. Then setting (X,A) = (CY, Y ) we have X/A = ΣX , and
we certainly satisfy the connectivity properties to apply claim 4; applying it, we have an exact
sequence

· · · → πi+1 ◦ SP (CY )→ πi+1 ◦ SP (ΣY )→ πi ◦ SP (Y )→ πi ◦ SP (CY )→ . . .

Now, for each k,

πk ◦ SP (CY ) = πk ◦ SP (pt) (since CY ' pt, so SP (CY ) ' SP (pt))

= πk(pt) (since SP pt = pt)

= 0

so the groups at each end of the portion of exact sequence above are zero, and we have an
isomorphism πi ◦ SP (Y ) ∼= πi+1 ◦ SP (ΣY ), but then πi+1 ◦ SP (ΣY ) = h′i(Y ) = Hi(Y ), so
πi ◦ SP (X) = Hi(X), which establishes Dold-Thom.

It remains to prove lemma 3 using claim 4, and finally to turn to the proof of claim 4.

Proof of lemma 3: For axiom 1, we simply observe that Σ is a homotopy functor (recall we
are using the reduced suspension); thus πi ◦ SP ◦ Σ, being the composition of three functors, is
a functor: and then if f ' g, Σf ' Σg, so SP Σf ' SP Σg, so πkSP Σf = πkSP Σf for all k
(that gives h′i−1f = h′i−1g).

For axiom 2, we note that for A a subcomplex of B, ΣA is a connected subcomplex of ΣB,
so we can apply claim 4 to (ΣA,ΣX). We deduce that we have an exact sequence

· · · → πi+1 ◦ SP (ΣA)→ πi+1 ◦ SP (ΣX)→ πi+1 ◦ SP (Σ(X/A))→ πi ◦ SP (ΣA)→ . . .

(using the fact that Σ(X/A) = ΣX/ΣA). That is

· · · → h′i(A)→ h′i(X)→ h′i(X/A)→ h′i−1(A)→ . . .
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which gives the required exact sequence, with ∂′k : h′k(X/A) → h′k−1(A) coming from the map
∂k+1 : πk+1 ◦ SP (ΣX/ΣA)→ πk ◦ SP (ΣA) we got from the claim. Naturality of that ∂ tells us
we have, for every map g : (X ′, A′)→ (Y ′, B′), a diagram:

πk+1 ◦ SP (X ′/A′)
∂k+1

//

πk+1◦SP (g)

��

πk ◦ SP (A′)

πk◦SP (g)

��

πk+1 ◦ SP (Y ′/B′)
∂k+1

// πk ◦ SP (B′)

Applying this to the map Σf : (ΣX,ΣA) → (ΣY,ΣB), where f : (X,A) → (Y,B) is arbitrary,
we get

πk+1 ◦ SP (Σ(X/A))
∂k+1

//

πk+1◦SP (Σf)

��

πk ◦ SP (ΣA)

πk◦SP (Σf)

��

πk+1 ◦ SP (Σ(Y/B))
∂k+1

// πk ◦ SP (ΣB)

That is,

h′k(X/A)
∂′

k
//

f∗

��

h′k−1(A)

f∗

��

h′k(Y/B)
∂′

k
// h′k−1(B)

Which establishes the naturality we require.
For axiom 3, we have that that

SP
∧

α

Xα =
◦

∏

α

SP Xα

where by
∏◦

we mean the weak product3. To see this, for each finite set of the αs, A say, and
each map f of A to the integers, consider the space XA,f =

∏

α∈A SPf(α)Xα. Now, we may
partially order such (A, f) by saying (A, f) 6 (A′, f ′) if A ⊆ A′ and f(α) 6 f ′(α) for all α where
this makes sense. Clearly this forms a direct system, and if (A, f) 6 (A′, f ′) then we can include
XA,f in XA′,f ′ . So we can consider the direct limit of the XA,f , say X . Now consider first
taking the limit over possible f , for given A, then taking the limit over A; after a little thought,
one sees that one gets

∏◦
α SP Xα. Since taking the limit in two pieces like this does not affect

the answer,
∏◦

α SP Xα = X . On the other hand, we can define n as the sum
∑

α∈A f(a), and
consider taking the limit first over pairs (X,A) with fixed n, then over increasing n; doing this,
one gets SP

∧

αXα. Thus SP
∧

αXα =
∏◦

α SP Xα, both equalling X .
We also have that, for a collection Xα of basepointed spaces, that πi

∏◦
Xα =

⊕

πiXα. We
can see this as follows.

First, for each of the Xα, pick a neighbourhood Uα of the basepoint which deformation
retracts onto the basepoint, and pick a deformation retraction θα. Now, we can consider an
element x ∈

∏◦Xα as a tuple (xα), where each xα ∈ Xα and where all but finitely many of the
xα are just the basepoint of their corresponding Xα. Define, for each finite subset S of the α, a
subset US of

∏◦
Xα as;

US = {x ∈

◦
∏

Xα|xα ∈ Uα for all α 6∈ S}

3The weak product is the direct limit of the products of finite subsets of the factors, where for example we
include X1 × . . . × Xn into X1 × . . . × Xn × Xn+1 via (x1, . . . , xn) 7→ (x1, . . . , xn, e) where e is the basepoint of

Xn+1.
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this is open (since it’s intersection with a finite product Xα1
× · · · ×Xαk

is open: in particular,
it looks like Tα1

× · · · × Tαk
where each Tαi

is either Xαi
or Uαi

, and so in either case is open in
Xαi

). The open neighbourhoods US cover X , since X is simply the union of the spaces
∏

α∈S Xα

where S is a finite set of the α (considered as living in X by setting all opther coordinates equal
to the basepoint); and

∏

α∈S Xα ⊂ US for all S.
Thus, given an element χ of a πk, and picking a representative map ϕ, we have, since ϕ

has compact image, that its image lies in a union
⋃

USi
for some finite sets Si; then if we set

S =
⋃

Si, we have that the image of ϕ lies in US. We can deformation retract US into
∏

α∈S Xα

by using maps Ft which are always the identity on all the factors corresponding to indices in
S, but which carry out the homotopies θα on the other factors. Post composing ϕ with this
retraction gives a homotopy of ϕ into another map ϕ′, which of course still represents χ, but
which now maps into

∏

α∈S Xα.

We have shown that every element of πi

∏◦Xα arises from the inclusion of πi

∏

α∈S Xα for

some S. This is equivalent to saying that the natural map4

lim
−→S finite

πi

∏

α∈S

Xα → πi

◦
∏

Xα

is surjective. A similar argument to the one above applied to homotopies between maps then
shows it is injective. Thus

πi

◦
∏

Xα = lim
−→S finite

πi

∏

α∈S

Xα

= lim
−→S finite

∏

α∈S

πiXα

= lim
−→S finite

⊕

α∈S

πiXα

(since S is finite)

=
⊕

α

πiXα

Then using our results that SP
∧

αXα =
∏◦

α SP Xα and πi

∏◦
Xα =

⊕

πiXα we have

h′i(
∧

α

Xα) = πi+1 ◦ SPΣ
∧

α

Xα

= πi+1 ◦ SP
∧

α

ΣXα

4This is the map induced by the compatible collection of maps

(ιS∗ : πi

Y

α∈S

Xα → πi

◦
Y

α

Xα)S finite

where ιS∗ is the map on homotopy induced by the natural inclusion

ιS :
Y

α∈S

Xα →
◦

Y

α

Xα

coming from the very definition of
Q

◦ as a limit. We can see compatibility of the ιS easily: if S ⊂ S′, then

ιS = ιS′ ◦ ιS,S′ , where ιS,S′ :
Q

α∈S Xα →
Q

α∈S′ Xα is the inclusion; so ιS∗ = ιS′∗ ◦ (ιS,S′ )∗
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(we can swap Σ and
∧

for reduced suspensions)

= πi+1

◦
∏

α

SP ΣXα

=
⊕

α

πi+1SP ΣXα

=
⊕

α

h′i(Xα)

For axiom 4, recall SP S1 ' S1, so π1 SP S
1 = π1 S

1; then

h′0(S
0) = π1 SP ΣS0 = π1 SP S

1

= π1S
1 = Z

This establishes all the axioms, and so completes the proof. �

We now turn to a consideration of the key claim 4. We want an exact sequence

· · · → πi(SP (A))→ πi(SP (X))→ πi(SP (X/A))→ πi(SP (A))→ . . .

Now, we have the usual exact sequence

· · · → πi(SP (A))→ πi(SP (X))→ πi(SP (X), SP (A))→ πi(SP (A))→ . . .

so comparing, what we want is for the quotient map q : SP (X)→ SP (X/A) to induce an isomor-
phism q∗ : πi(SP (X), SP (A)) → πi(SP (X/A)); that is, we wish for q∗ : πi(SP (X), q−1(b)) →
πi(SP (X/A)) to be an isomorphism. Establishing this fact is the crux of the Dold-Thom theo-
rem, and turns out to be a little tricky. As a starting point, let us give a name to maps p : X → Y
such that p∗ : πk(X, p−1(b)) → πk(Y, b) is an isomorphism for all b: quasifibrations. What we
want, therefore, is to show q is a quasifibration. (The name is chosen since the standard theorem
one proves about fibrations which gives them their homotopical usefulness is that they have
this quasi-fibration property: so ‘a quasi-fibration is something that has the useful homotopical
property fibrations have’.)

Now, quite a few results in topology are proved by first showing they hold for certain partic-
ularly nice subsets, then patching this together to show it holds for larger subsets, and finally
using some kind of limiting argument to extend this to the whole space (for example, Poincaré
duality is proved in this way). We shall use this kind of approach here. We will therefore need
the following criteria for being a quasifibration, (whose proof we defer to the next section) which
allow us to patch together the property of being a quasifibration from smaller to larger spaces,
and which allow us to pass the property of being a quasifibration over to limits.

Patching criterion for quasifibrations: If p : X → Y is a continuous map with connected
fibers and U, V are sets with Y = U ∪V , and assuming U, V, p−1(U), p−1(V ), X, Y are connected,
then if the three maps

p|p−1(U) : p−1(U)→ U, p|p−1(V ) : p−1(V )→ V and p|p−1(U∩V ) : p−1(U ∩ V )→ U ∩ V

are quasifibrations, then so is p.

Limiting criterion for quasifibrations: Suppose p : X → Y is a continuous map and
Y =

⋃∞
i=0 Yi, with the union (direct limit) topology. Suppose further that both X and Y are

Hausdorff. Then if p|p−1(Yi) : p−1(Yi)→ Yi is a quasifibration for all i, then p is a quasifibration.

Another technique which is often useful in showing something has a particular property is that
the property is resilient to some kind of smooth change. We will need a technical result like this
for quasifibrations (whose proof we again defer). The particular kind of smooth change that turns
out to be helpful here is a deformation of a subspace into a smaller subspace (this is sometimes
called a ‘deformation in the weak sense’ to distinguish it from a deformation retraction; but we
will not use this terminology, since it takes too many words.)



10 THOMAS BARNET-LAMB

So what is this strange ‘deformation’ concept? Let A ⊂ X ⊂ Y ; a deformation of X into A
is a homotopy Ft of maps Y → Y which starts with the identity on Y , and for which F1 maps
X completely into A. We must also have that Ft, for all t, maps A into itself and X into itself.
(Note that we do not require that Ft fixes every point in A, as we would require for Ft|X to be
a deformation retraction.) Then we have:

Homotopy criterion for quasifibrations: If p : X → Y is a continuous map with path-
connected fibers and we are given a deformation of X into a subspace X ′ (Ft say), covering a
deformation Gt of Y into a subspace Y ′ (with X,Y,X ′, Y ′ all path connected), and such that
p|X′ : X ′ → Y ′ is a quasifibration, and (finally) such that F1 : p−1(b) → p−1(G1(b)) is a weak
homotopy equivalence for all b, then p is a quasifibration.

(By saying that Ft covers Gt, we just mean that p ◦ Ft = Gt ◦ p, for all t.)
Armed with these criteria, we can go forward to prove the key claim by showing that

q : SP (X) → SP (X/A) (as defined above) is a quasifibration. We will do this by showing (in-
ductively) that for each n, p|p−1(Bi) is a quasifibration, where Bi = SPi(X/A). (Since SP (X/A)
is the union of the Bi with the union topology, we are then done by the limiting criterion.) For
n = 0, B0 is a point, and the result is trivial. So let us turn to the inductive case, n > 0. We shall
find an open neighbourhood U of Bn−1 over which q is a quasifibration (by which we mean that
q|q−1(U) is a quasifibration). We shall also show that q is a quasifibration over V = Bn\Bn−1

(which is clearly open) and U ∪ V , and then we’ll be done by the patching criterion. Before
we wade into doing this, however, we will first note that we might as well replace X with the
mapping cylinder of the inclusion of A into X (which is homotopy equivalent to X). This will
turn out to make a few things slightly easier in the rest of the proof.

Now, we begin by picking a neighborhood W of A in X with a deformation of W into A. Since
X is a mapping cylinder, this can be chosen to just slide points along the mapping cylinder,
compressing the part of the mapping cylinder near A to the A end, while stretching the bit near
the X end. This then has the additional property that the deformation actually fixes all points
in A at all times t.

We then define U as the set of points in Bn = SPn(X/A) which have at least one factor in
W/A; this is clearly a neighbourhood of e. Now, let ft be our deformation of W into A; this
clearly gives a deformation f̄t of W/A onto b = A/A (just postcompose with the quotient map
W → W/A; the resulting composite clearly factors through the quotient W → W/A). Now,
define a map

Ft : SP (X)→ SP (X) : x1 + · · ·+ xk 7→ ft(x1) + · · ·+ ft(xk)

(this is well defined, since ft fixes the basepoint e, as it’s in A, so it doesn’t matter if we add
extra es in the expression in the LHS). We can similarly define a map F̄t. Clearly Ft covers F̄t;
and F̄t restricts to give a deformation of U into Bn−1. Similarly, Ft restricts to give a retraction
of p−1(U) into p−1(Bn). We inductively know q is a quasifibration over Bn−1; so we’ll be done
by the homotopy condition for quasifibrations if we can show F1 induces a weak homotopy
equivalence p−1(b)→ p−1(F̄ (b)) for all b. So fix a b = x̄1 + · · ·+ x̄n, where the x̄i are points in
X/A. Now, we may as well assume none of the x̄i is the basepoint A/A; which means each has
a unique lift to a point xi of X\A. Then it is clear that p−1(b) is homeomorphic to SP (A) via

ψ : SP (A)→ p−1(b) : P 7→ P + x1 + · · ·+ xn

Now, when we apply f1 to the xi, some will be mapped into A, while others will remain in
X\A. We may wlog assume that we have reordered such that f1(x1), . . . , f1(xk) ∈ X\A while
f1(xk+1), . . . , f1(xn) ∈ A. Then it is clear that p−1(f̄(b)) is homeomorphic to SP (A) via

ϕ : SP (A)→ p−1(f̄(b)) : P 7→ P + f1(x1) + · · ·+ f1(xk)
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Then we have, for P ∈ SP (A)

F1(ψ(P )) = F1(P + x1 + · · ·+ xn)

= F1(P ) + f1(x1) + . . . f1(xn)

= ϕ(F1(P )) + f1(xk+1) + · · ·+ f1(xn)

= ϕ(F1(P )) +Q (say, where Q = f1(xk+1) + · · ·+ f1(xn))

Now, since A is path connected, so is SP (A), and we can find a path Qt from Q to the basepoint.
Then F1◦ψ : P 7→ ϕ(F1(P ))+Q is homotopic via µt : P 7→ ϕ(F1−t(P ))+Qt to P 7→ ϕ(F0(P )) =
ϕ(P ). We deduce F1 satisfies

F1|p−1(b) = F1 ◦ ψ ◦ ψ
−1 ' ϕ ◦ ψ−1

and so, being homotopic to a homeomorphism, is a homotopy equivalence (since ϕ and ψ are
both homeomorphisms, so is ϕ ◦ ψ−1). This is as we require.

Now, let us turn to the space V = Bn\Bn−1. It is clear that V = SPn((X/A)\{e}). Now,
there is homeomorphism (X/A)\{e} → X\A, which gives a homeomorphism SPn((X/A)\{e}) ∼=
SPn(X\A). Let θ : V → SPn(X\A) be this homeomorphism. It is clear that SPn(X\A) includes
into SP (X); thus we can think of θ mapping to SP (X). It is then clear that p ◦ θ is the identity
on V (θ gives a section for p), and that each P ∈ p−1(V ) may be written as P = θ(p(P ))+Q for
some Q: a little thought shows Q ∈ SP (A). Now, it is an easy excercise that the ‘subtraction’
map on SP is continuous on compact sets where defined, so if we define Q : p−1(V ) → SP (A)
so P = θ(p(P )) + Q(P ), then Q is continuous on compact sets. Clearly p ◦ Q is identically
equal to e. Putting this together, and pretending Q were continuous for a moment, we’d have a
homeomorphsm:

p−1(V ) ∼= V × SP (A)

P → (p(P ), Q(P ))

θ(v) +Q← (v,Q)

Then considering p as a map on V × SP (A) rather than p−1(V ), it would be simply projection
onto the second factor. Thus it would be a fiber bundle (indeed, a trivial bundle), and so
a fibration, and so a quasifibration. But seeing as we’re interested in homotopy, and maps
representing homotopy elements always have compact image, the fact that Q is only continuous
on compact subsets does not prevent the above argument going through.

(The same argument gives a map p−1(V ∩U)→ (V ∩U)×SP (A) which is a homeomorphism
on compact sets: so we get that p|p−1(U∩V ) is also a quasifibration.)

4. Establishing the criteria for quasifibrations

We’ll first look at the patching criterion, and we’ll find that we need a technical tool in the
argument; the proof of this tool will be deferred to the next section (and that’s the last time
a proof is deferred in this essay, I promise!) We’ll call it ‘homotopical Mayer-Vietoris’, since it
allows us to deduce facts about what a map does on the homotopy groups of a whole space from
what it does on two subsets the union of whose interiors is the whole space.

Technical tool: Suppose f : (X ;A,B)→ (Y ;C,D) is a continuous map (that is a map X → Y
sending A to C and B to D), where X is the union of the interiors of A and B and similarly
for Y , C and D. Suppose further that the induced maps πi(A,A ∩ B) → πi(C,C ∩ D) and
πi(B,A∩B)→ πi(D,C∩D) are surjections for i < k and bijections for i = k, then the same can
be said for the induced maps πi(X,A) → πi(Y,C) (and, symmetrically, for the induced maps
πi(X,B)→ πi(Y,D) also).
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Theorem 5. The patching criterion for being a quasifibration holds. That is, if p : X → Y is
a continuous map with path-connected fibers and U, V are sets with Y = U ∪ V , and assuming
U, V, p−1(U), p−1(V ), X, Y are connected, then if the three maps

p|p−1(U) : p−1(U)→ U, p|p−1(V ) : p−1(V )→ V and p|p−1(U∩V ) : p−1(U ∩ V )→ U ∩ V

are quasifibrations, then so is p.

Proof: For convenience, write Ū for p−1(U) and similarly V̄ for p−1(V ). Consider the map
induced by p from the long exact sequence of the triple (Ū , Ū ∩ V̄ , p−1(b)) to that of (U,U ∩V, b).
The maps πk(Ū , p−1(b)) → πk(U, b) are isomorphisms by assumption that p is a quasifibration
over U ; similarly, since it is a quasifibration over U∩V , the maps πk(Ū∩V̄ , p−1(b))→ πk(U∩V, b)
are isomorphisms. Thus, by the five lemma5, we deduce the maps πk(Ū , Ū ∩ V̄ )→ πk(U,U ∩V )
are isomorphisms. A similar argument shows the same holds for the maps πk(V̄ , Ū ∩ V̄ ) →
πk(V, U ∩ V ).

Then the technical tool tells us the maps πk(X, Ū) → πk(Y, U) are isomorphisms. And we
know the maps πk(Ū , p−1(b))→ πk(U, b) are isomorphisms. Then considering the map induced
by p from the long exact sequence of the triple (X, Ū, p−1(b)) to that of (Y, U, b), the five lemma
tells us that the maps πk(X, p−1(b))→ πk(Y, b) are isomorphisms, which is as we require. �

Before we turn to the limiting criterion, it will be useful to prove a lemma.

Lemma 6. Suppose Y is a Hausdorff space such that Y =
⋃∞

i=0 Yi, with the union (direct limit)
topology, for subspaces Yi. Then a compact subset K of Y actually lies in Yi for some i.

Proof: For each i, pick an element yi ∈ Y such that yi 6∈ Yi. For each k, we claim the set
Sk = {yk, yk+1, . . . } is closed. For this, it suffices to prove that for each n, the intersection
Sk ∩ Yn is closed. But Sk ∩ Yn = {yk, . . . , yn−1} (or is empty if k > n, so certainly closed); this
is a finite set, so (as we’re in a Hausdorff space) certainly closed. Thus our claim is proved.

Now, the Sk ⊂ K, and every finite intersection
⋂

Ski
of the Sk is nonempty (being SN for

N = max ki); but the intersection of all the Sk is empty (since Sk ⊂ Y \Yk, so
⋂

Sk ⊂ Y \
⋃

Yk =
Y \Y = {}). This contradicts the compactness of K. �

Theorem 7. The limiting criterion for being a quasifibration holds: suppose p : X → Y is a
continuous map and Y =

⋃∞
i=0 Yi, with the union (direct limit) topology. Suppose further both

X and Y are Hausdorff. Then if p|p−1(Yi) : p−1(Yi) → Yi is a quasifibration for all i, then p is
a quasifibration.

Proof: Fix a basepoint b in Y . Suppose χ is an element of πk, and ϕ is a representative map.
Then, since the image of ϕ is compact, it lies in some Yi; we may write ϕ = ιi ◦ ϕ

′, where
ιi : Yi → Y is inclusion and ϕ′ is the map ϕ considered as a map to Yi. Then χ is = ιi∗([ϕ

′])
and so lies in the image of ιi∗. This tells us that the natural map lim→ πk(Yi) → πk(Y ) is
surjective (compare the establishment of axiom 3 in the proof of lemma 3); then (as usual)
a similar argument applied to homotopies gives that the map is injective: and we conclude
lim→ πk(Yi) ∼= πk(Y ). A similar argument gives that lim→ πk(p−1(Yi), p

−1(b)) ∼= πk(X, p−1(b))
(here we only take the limit where it makes sense: i.e. over those i large enough that b ∈ Yi).
(We begin this ‘similar argument’ by saying, for a map ϕ to X representing a homotopy element,
that since the image of p ◦ ϕ is compact, it lies in some Yi; so the image of ϕ lies in p−1(Yi).)

Now let us turn to the map p∗ : πk(X, p−1(b))→ πk(Y, b). We have

πk(X, p−1(b)) ∼= lim
→
πk(p−1(Yi), p

−1(b))

∼= lim
→
πk(Yi)

5We note that the bit at the end of the long exact sequence, where everything stops being a group, has
everything zero anyway, since everything in sight is path connected. It is then an easy exercise that we can

deduce the relative π1 is zero, even though the usual (group) 5 lemma does not apply.
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(since by assumption πk(p−1(Yi), p
−1(b) ∼= πk(Yi) via the map induced by p|p−1(Yi); these iso-

morphisms are compatible as they all restrict p∗)

∼= πk(Y, b)

The isomorphism is clearly induced by p∗ (since on each πk(X, p−1(b)) it restricts to give
p∗|πk(p−1(Yi),p−1(b))); this is as required. �

Theorem 8. The homotopy criterion for being a quasifibration holds: if p : X → Y is a
continuous map with path-connected fibers and we are given a deformation of X into a subspace
X ′ (Ft say), covering a deformation Gt of Y into a subspace Y ′ (with X,Y,X ′, Y ′ all path
connected), and such that p|X′ : X ′ → Y ′ is a quasifibration, and (finally) such that F1 :
p−1(b)→ p−1(G1(b)) is a weak homotopy equivalence for all b, then p is a quasifibration.

Proof: Fix a point b in Y . Since F1 covers G1, we have p◦F1 = G1 ◦p; this induces the following
commutative diagram on homotopy groups:

πk(X, p−1(b))
p∗

//

F1∗

��

πk(Y, b)

G1∗

��

πk(X ′, p−1(G1(b)))
p∗

// πk(Y ′, G1(b))

Our aim is to prove the map across the top is an isomorphism for all k, so it suffices to prove the
other three maps are isomorphisms for all k. The fact that p|X′ is a quasifibration immediately
gives this for the map across the bottom.

To show the left vertical map is an isomorphism, it suffices (by the long exact sequence
for relative homotopy, and the five lemma6) to show that F1∗ : πk(X) → πk(X ′) and F1∗ :
πk(p−1(b)) → πk(p−1(G1(b))) are isomorphisms. But the former is true since F1 is homotopic
via Ft to the identity, and the latter is true by the hypothesis that F1 : p−1(b)→ p−1(G1(b)) is
a weak homotopy equivalence for all b.

Similarly, to show that the right map is an isomorphism, we just need G1∗ : πk(Y )→ πk(Y ′)
is an isomorphism (which it is since G1 is homotopic to the identity), and G1∗ : πk({b}) →
πk({G1(b)}) is an isomorphism (which it is since both the groups πk({b}) and πk({G1(b)}) are
trivial, being homotopy groups of a point. �

5. Establishing ‘homotopical Mayer-Vietoris’

This section is one of the most directly geometric of the entire essay. We will working explicitly
with maps representing homotopy group elements and homotopies between them. To save a little
work, we will prove the following lemma, which for an inclusion (X,A) → (Y,C) gives a single
geometric condition which is equivalent both to the injectivity of the map on πk−1 and the
surjectivity of the map of πk. (It should not be altogether surprising that these both reduce to
a single condition, seeing as the injectivity involves the existence of a homotopy of a given map
of Sk−1 to zero—a k dimensional object—while the surjectivity involves the construction of a
map of Sk, which is again a k dimensional object.)

6The same remarks as made during the proof of the patching criterion, about the non-group bits of the

sequence vanishing, hold here.
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Lemma 9. Suppose we have an inclusion (X,A) → (Y,C); then the following conditions are
equivalent:

(1) The induced map on πk−1 is injective and the induced map on πk is surjective.
(2) Let us write the surface ∂Dk of the k dimensional disk as the union of hemispheres ∂+D

k

and ∂−D
k meeting in Sk−2. Suppose we are given a map of Dk × {0} ∪ ∂+D

k × I to Y
which sends
• ∂−D

k × {0} and Sk−2 × I to A
• ∂+D

k × {1} to X
• Sk−2 × {1} to C

Then it extends to a map Dk × I → Y sending
• ∂−D

k × I to A
• Dk × {1} to X
• ∂−D

k × {1} to C
(3) Condition (2) weakened by only requiring that we can extend maps which are independent

of the I coordinate on the ∂+D
k × I part.

Proof: Clearly (3)⇒ (2). Let us turn to the implication (3)⇒ (1). So suppose (3) holds. Let us
first show that we have injectivity on πk−1. Given an element of the kernel of ι∗ : πk−1(X,A)→
πk−1(Y,C), we can represent it by a map ψ : (Dk−1, ∂Dk−1) → (X,A), or equivalently a map
(∂+D

k×{1}, Sk−2×{1})→ (X,A). We can extend this to ∂+D
k×I using the requirement that

the map be independent of the I coordinate. We can then extend across Dk ×{0} using the the
fact that ψ is homotopic to a constant as a map to (Y,C). Then using (3), we can extend to a
map on all of Dk × I. Restricting this do Dk × {1} shows ψ is homotopic to a constant map as
a map to (X,A) too. Hence the kernel is trivial.

Now let us show surjectivity on πk. Given an element of πk(Y,C), we can represent it by an
map Dk×{0} to Y sending ∂+D

k×{0} to the basepoint and ∂−D
k×{0} to C. Again we extend

to ∂+D
k× I by the requirement that the map be independent of the I coordinate. Then we can

use (3) to extend to a map on Dk × I. The restriction of this to Dk × {1} gives an element of
πk(X,A); then the whole map on Dk × I gives a homotopy which shows that once we map into
πk(Y,C), this is equal to our original element.

We now turn to (1) ⇒ (2). Given a map f as in (2), we may consider the map on (∂+D
k ×

{1}, Sk−2×{1}) as representing an element θ of πk−1(X,A). Once we map this into πk−1(Y,C),
this is conjugate to the element represented by the map on (∂+D

k × {0}, Sk−2 × {0}) (the map
on ∂+D

k × I gives the homotopy to show this), which is zero (by consideration of the map f
restricted to Dk × {0}. Thus by the injectivity of (1), θ is zero, which means we can extend f
across Dk × {1}, to get f1 (say). Now, choose a small k-disk En in ∂−D

k × I, which intersects
Dn × {1} in a hemisphere ∂+E

n of its boundary. By a small deformation of f1, we may assume
that ∂+E

n is sent identically to some fixed point (call the modified map f2). The surjectivity
part of (1) means that we can extend our map f2 to cover all of Dk × I, such that everything is
sent to the places as required by (2), except that En gets sent to X and ∂−E

n gets sent to A.
We then do a small deformation to ‘pivot’ En into Dk × {1}, and we’re done. �

Theorem 10. Suppose f : (X ;A,B) → (Y ;C,D) is a continuous map (that is a map X → Y
sending A to C and B to D). Suppose further that the induced maps πi(A,A∩B)→ πi(C,C∩D)
and πi(B,A ∩ B) → πi(D,C ∩ D) are surjections for i < k and bijections for i = k, then the
same can be said for the induced maps πi(X,A)→ πi(Y,C) (and, symmetrically, for the induced
maps πi(X,B)→ πi(Y,D) also).

Proof: Our first goal is to replace our arbitrary map f with an inclusion using mapping cylinders.
We can replace Y with the mapping cylinder of f : X → Y ; we then replace C with Mf |A ∪

(f−1(C) × (1/2, 1]) where by Xf−1(C) × (1/2, 1] we really mean its image in Mf . Similarly
replace D with Mf |B ∪ (f−1(D) × (1/2, 1]). (The reason we add the (f−1(C) × (1/2, 1]) bits,
which do not change the homotopy types, is to ensure the new Y is still the union of the interiors
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of C and D.) Then it is clear that it suffices to prove the result for the inclusion of (X,A,B)
into this new complex.

In view of the lemma, it suffices to assume that property (2) holds for the inclusions (A,A ∩
B)→ (C,C∩D) and (B,A∩B)→ (D,C∩D) and prove that property (3) holds for the inclusion
(X,A) → (Y,C). The argument upon which we are about to embark will make much use of
subdivision of disks into smaller disks. This is a little easier, from the standpoint of bookkeeping,
if we use cubes In rather than Dn; so let us choose an identification of Dn with In which sends
one face of the cube to ∂−D

k and sends the disc formed by all the remaining faces to to ∂+D
k.

Now, suppose we are given our function f defined on Ik × {0} ∪ ∂+I
k × I. We first split Ik

into small cubes, each small enough so that each of the small cubes is either sent completely into
C or D. In constructing our extension, we will preserve the following key property:

• For K a small cube or indeed any face of such a cube, then if K × {0} is sent to C or
D, then (K × I,K × {1}) is sent to (C,A) or (B,D) respectively.

We may assume this condition holds initially if we suppose A = X ∪ C and B = C ∪D, which
certainly holds for the mapping cylinder construction we performed above.

We then slowly extend our map to the small cubes and their lower dimensional faces (working
up through the dimensions). Let K be such a subcube (or lower dimensional face), and suppose
we have already extended f to ∂+K × I. If f maps ∂−K × {0} to C ∩D, then using property
(2) for either the inclusion (A,A ∩ B) → (C,C ∩D) (if K × {0} is sent to C) or the inclusion
(B,A∩B) → (D,C∩D) (if K×{0} is sent to D), we can make the extension required, preserving
the key property. Otherwise, the given f takes (K×{0}, ∂−K×{0}) to either (C,C) or (D,D),
and it is easy to construct the required extension with our bare hands, by simply picking a
retraction of K × I to ∂+K × I ∪ K × {0} which sends K × {1} to ∂+K × {1}, then simply
defining the new f to be the old f postcomposed with this retraction. �
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