Math 416 - Abstract Linear Algebra
 Fall 2011, section E1
 Similar matrices

1 Change of basis

Consider an $n \times n$ matrix A and think of it as the standard representation of a transformation $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. If we pick a different basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbb{R}^{n}, what matrix B represents T_{A} with respect to that new basis?
Write $V=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$ and consider the diagram

which says the new matrix is $B=V^{-1} A V$.

Remark: This is an instance of the more general change of coordinates formula. Start with a linear transformation $T: V \rightarrow W$. Let \mathcal{A} be the "old" basis of V and \widetilde{A} the "new" basis. Let \mathcal{B} be the "old" basis of W and \widetilde{B} the "new" basis. Then the diagram
gives the change of coordinates formula

$$
[T]_{\tilde{\mathcal{B}} \tilde{\mathcal{A}}}=[\mathrm{idd}]_{\tilde{\mathcal{B}}}[T]_{\mathcal{B A}}[\mathrm{id}]_{\mathcal{A} \tilde{\mathcal{A}}} .
$$

Example: Let $A=\left[\begin{array}{ll}5 & -3 \\ 2 & -2\end{array}\right]$, viewed as a linear transformation $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Find the matrix B representing the same transformation with respect to the basis $\left\{v_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$.

Write $V=\left[\begin{array}{ll}v_{1} & v_{2}\end{array}\right]$. Then we have

$$
\begin{aligned}
B & =V^{-1} A V \\
& =\left[\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right]^{-1}\left[\begin{array}{ll}
5 & -3 \\
2 & -2
\end{array}\right]\left[\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right] \\
& =\frac{1}{5}\left[\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right]\left[\begin{array}{ll}
5 & -3 \\
2 & -2
\end{array}\right]\left[\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right] \\
& =\frac{1}{5}\left[\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right]\left[\begin{array}{cc}
12 & -1 \\
4 & -2
\end{array}\right] \\
& =\frac{1}{5}\left[\begin{array}{cc}
20 & 0 \\
0 & -5
\end{array}\right] \\
& =\left[\begin{array}{cc}
4 & 0 \\
0 & -1
\end{array}\right] .
\end{aligned}
$$

What this means is that the transformation $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is determined by

$$
\begin{aligned}
& A v_{1}=4 v_{1}+0 v_{2}=4 v_{1} \quad(\text { first column of } B) \\
& A v_{2}=0 v_{1}-1 v_{2}=-v_{2} \quad(\text { second column of } B) .
\end{aligned}
$$

Let us check this explicitly:

$$
\begin{aligned}
& A v_{1}=\left[\begin{array}{ll}
5 & -3 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{c}
12 \\
4
\end{array}\right]=4\left[\begin{array}{l}
3 \\
1
\end{array}\right]=4 v_{1} \\
& A v_{2}=\left[\begin{array}{ll}
5 & -3 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-2
\end{array}\right]=-\left[\begin{array}{l}
1 \\
2
\end{array}\right]=-v_{2} .
\end{aligned}
$$

2 Similar matrices

The change of basis formula $B=V^{-1} A V$ suggests the following definition.

Definition: A matrix B is similar to a matrix A if there is an invertible matrix S such that $B=S^{-1} A S$.
In particular, A and B must be square and A, B, S all have the same dimensions $n \times n$. The idea is that matrices are similar if they represent the same transformation $V \rightarrow V$ up to a change of basis.

Example: In the example above, we have shown that $\left[\begin{array}{cc}4 & 0 \\ 0 & -1\end{array}\right]$ is similar to $\left[\begin{array}{ll}5 & -3 \\ 2 & -2\end{array}\right]$.

Exercise: Show that similarity of matrices is an equivalence relation.

3 Trace of a matrix

How can we tell if matrices are similar? There is an easy necessary (though not sufficient) condition.

Definition: The trace of an $n \times n$ matrix A is the sum of its diagonal entries:

$$
\operatorname{tr} A=\sum_{i=1}^{n} a_{i i}=a_{1,1}+a_{2,2}+\ldots+a_{n, n}
$$

Examples: $\operatorname{tr}\left[\begin{array}{cc}4 & 5 \\ -1 & 2\end{array}\right]=6, \quad \operatorname{tr}\left[\begin{array}{cc}10 & 2 \\ 3 & -1\end{array}\right]=9, \quad \operatorname{tr}\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]=15$,

$$
\operatorname{tr}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=3, \quad \operatorname{tr}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=4 .
$$

Proposition: For any two $n \times n$ matrices A and B, we have $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.

Proof:

$$
\begin{aligned}
\operatorname{tr}(A B) & =\sum_{i=1}^{n}(A B)_{i i} \\
& =\sum_{i=1}^{n} \sum_{k=1}^{n} a_{i k} b_{k i} \\
& =\sum_{k=1}^{n} \sum_{i=1}^{n} b_{k i} a_{i k} \\
& =\sum_{k=1}^{n}(B A)_{k k} \\
& =\operatorname{tr}(B A) .
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \operatorname{tr}\left(\left[\begin{array}{cc}
4 & 5 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
10 & 2 \\
3 & -1
\end{array}\right]\right)=\operatorname{tr}\left[\begin{array}{cc}
55 & 3 \\
-4 & -4
\end{array}\right]=51 \\
& \operatorname{tr}\left(\left[\begin{array}{cc}
10 & 2 \\
3 & -1
\end{array}\right]\left[\begin{array}{cc}
4 & 5 \\
-1 & 2
\end{array}\right]\right)=\operatorname{tr}\left[\begin{array}{cc}
38 & 54 \\
13 & 13
\end{array}\right]=51 .
\end{aligned}
$$

Corollary: Similar matrices have the same trace.

Proof: Homework \#8.5.

Example: In the example above, we have $\operatorname{tr}\left[\begin{array}{ll}5 & -3 \\ 2 & -2\end{array}\right]=3$ and $\operatorname{tr}\left[\begin{array}{cc}4 & 0 \\ 0 & -1\end{array}\right]=3$.
Warning! The converse does not hold. In other words, matrices with the same trace are rarely similar.

Example: The matrices

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

all have trace 0 , but none of them is similar to another, since they have different ranks (respectively $0,1,2)$.
In fact, for any number $a \in \mathbb{R}$ the matrix $\left[\begin{array}{cc}a & 0 \\ 0 & -a\end{array}\right]$ has trace 0 . However, if we pick a number $b \neq \pm a$, then $\left[\begin{array}{cc}a & 0 \\ 0 & -a\end{array}\right]$ is not similar to $\left[\begin{array}{cc}b & 0 \\ 0 & -b\end{array}\right]$.
In chapter 4, we will learn better tools to tell whether or not two matrices are similar.

