Math 416 - Abstract Linear Algebra
 Fall 2011, section E1
 Schur decomposition

Let us illustrate the algorithm to find a Schur decomposition, as in § 6.1, Theorem 1.1.

Example: Find a Schur decomposition of the matrix

$$
A=\left[\begin{array}{cc}
7 & -2 \\
12 & -3
\end{array}\right]
$$

Solution: First, we want an eigenvector of A. Let us find the eigenvalues:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{cc}
7-\lambda & -2 \\
12 & -3-\lambda
\end{array}\right| \\
& =(7-\lambda)(-3-\lambda)+24 \\
& =\lambda^{2}-4 \lambda-21+24 \\
& =\lambda^{2}-4 \lambda+3 \\
& =(\lambda-1)(\lambda-3) .
\end{aligned}
$$

The eigenvalues are $\lambda=1,3$. We could arbitrarily pick one of the two and find an eigenvector, but while we're at it, let's find both:

$$
\lambda=1: A-\lambda I=A-I=\left[\begin{array}{cc}
6 & -2 \\
12 & -4
\end{array}\right] \sim\left[\begin{array}{cc}
3 & -1 \\
0 & 0
\end{array}\right]
$$

Take $\left[\begin{array}{l}1 \\ 3\end{array}\right]$, normalized to $\frac{1}{\sqrt{10}}\left[\begin{array}{l}1 \\ 3\end{array}\right]$.

$$
\lambda=3: A-\lambda I=A-3 I=\left[\begin{array}{cc}
4 & -2 \\
12 & -6
\end{array}\right] \sim\left[\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right]
$$

Take $\left[\begin{array}{l}1 \\ 2\end{array}\right]$, normalized to $\frac{1}{\sqrt{5}}\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
In fact, let's pick $\lambda_{1}=3$ with normalized eigenvector $u_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
We need to find an orthonormal basis $\left\{v_{2}\right\}$ of $\operatorname{Span}\left\{u_{1}\right\}^{\perp}=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}^{\perp}=\operatorname{Span}\left\{\left[\begin{array}{c}-2 \\ 1\end{array}\right]\right\}$. Pick $v_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}-2 \\ 1\end{array}\right]$.
Now we express the transformation A in the new orthonormal basis $\left\{u_{1}, v_{2}\right\}$. Writing

$$
U=\left[\begin{array}{ll}
u_{1} & v_{2}
\end{array}\right]=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right]
$$

the matrix of A in the basis $\left\{u_{1}, v_{2}\right\}$ is

$$
\begin{aligned}
{[A]_{\left\{u_{1}, v_{2}\right\}} } & =U^{-1}[A]_{\text {standard }} U \\
& =U^{T}[A]_{\text {standard }} U \\
& =\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{cc}
7 & -2 \\
12 & -3
\end{array}\right] \frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right] \\
& =\frac{1}{5}\left[\begin{array}{cc}
31 & -8 \\
-2 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right] \\
& =\frac{1}{5}\left[\begin{array}{cc}
15 & -70 \\
0 & 5
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 & -14 \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

Because A was 2×2, we can take $u_{2}=v_{2}$ and the algorithm stops here. We have found the Schur decomposition $A=U T U^{*}$ where

$$
T=\left[\begin{array}{cc}
3 & -14 \\
0 & 1
\end{array}\right]
$$

is upper triangular and

$$
U=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right]
$$

is unitary.

Remark: The Schur decomposition is not unique, as there are choices involved in the algorithm. However, the eigenvalues of A will always appear on the diagonal of T, since A is similar to T.

The theorem does not guarantee that U and T will be real matrices, even if we start with a real matrix A.

Example: Find a Schur decomposition of the matrix

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-2 & 3
\end{array}\right] .
$$

Solution: First, we want an eigenvector of A. Let us find the eigenvalues:

$$
\left.\begin{array}{l}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
1-\lambda & 1 \\
-2 & 3-\lambda
\end{array}\right| \\
\\
=(1-\lambda)(3-\lambda)+2 \\
\\
=\lambda^{2}-4 \lambda+5
\end{array}\right\}=\frac{4 \pm \sqrt{16-4(5)}}{2}=2 \pm \sqrt{-1}=2 \pm i . .
$$

Pick $\lambda_{1}=2+i$. (The choice doesn't really matter since eigenvectors of a real matrix corresponding to complex eigenvalues come in conjugate pairs.) Let us find an eigenvector:

$$
\lambda_{1}=2+i: A-\lambda_{1} I=A-(2+i) I=\left[\begin{array}{cc}
-1-i & 1 \\
-2 & 1-i
\end{array}\right] \sim\left[\begin{array}{cc}
1+i & -1 \\
0 & 0
\end{array}\right]
$$

Take $\left[\begin{array}{c}1 \\ 1+i\end{array}\right]$, normalized to $u_{1}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}1 \\ 1+i\end{array}\right]$. Note that for complex matrices, the null space is not orthogonal to the row space, but rather to the conjugate row space.
We need to find an orthonormal basis $\left\{v_{2}\right\}$ of

$$
\begin{aligned}
\operatorname{Span}\left\{u_{1}\right\}^{\perp} & =\operatorname{Span}\left\{\left[\begin{array}{c}
1 \\
1+i
\end{array}\right]\right\}^{\perp} \\
& =\operatorname{Null}\left[\begin{array}{cc}
1 & 1-i
\end{array}\right] \\
& =\operatorname{Span}\left\{\left[\begin{array}{c}
1-i \\
-1
\end{array}\right]\right\}
\end{aligned}
$$

Take the normalized vector $v_{2}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}1-i \\ -1\end{array}\right]$.
Now we express the transformation A in the new orthonormal basis $\left\{u_{1}, v_{2}\right\}$. Writing

$$
U=\left[\begin{array}{ll}
u_{1} & v_{2}
\end{array}\right]=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}
1 & 1-i \\
1+i & -1
\end{array}\right]
$$

the matrix of A in the basis $\left\{u_{1}, v_{2}\right\}$ is

$$
\begin{aligned}
{[A]_{\left\{u_{1}, v_{2}\right\}} } & =U^{-1}[A]_{\text {standard }} U \\
& =U^{*}[A]_{\text {standard }} U \\
& =\frac{1}{\sqrt{3}}\left[\begin{array}{cc}
1 & 1-i \\
1+i & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-2 & 3
\end{array}\right] \frac{1}{\sqrt{3}}\left[\begin{array}{cc}
1 & 1-i \\
1+i & -1
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{cc}
-1+2 i & 4-3 i \\
3+i & -2+i
\end{array}\right]\left[\begin{array}{cc}
1 & 1-i \\
1+i & -1
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{cc}
6+3 i & -3+6 i \\
0 & 6-3 i
\end{array}\right] \\
& =\left[\begin{array}{cc}
2+i & -1+2 i \\
0 & 2-i
\end{array}\right] .
\end{aligned}
$$

Because A was 2×2, we can take $u_{2}=v_{2}$ and the algorithm stops here. We have found the Schur decomposition $A=U T U^{*}$ where

$$
T=\left[\begin{array}{cc}
2+i & -1+2 i \\
0 & 2-i
\end{array}\right]
$$

is upper triangular and

$$
U=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}
1 & 1-i \\
1+i & -1
\end{array}\right]
$$

is unitary.

Conclusion: Computing a Schur decomposition by hand is annoying. In practice ${ }^{1}$, knowing the existence of a Schur decomposition is more useful than finding an explicit one.

[^0]
[^0]: ${ }^{1}$ for the purposes of pure mathematics

