Math 416 - Abstract Linear Algebra
 Fall 2011, section E1
 Orthogonal matrices and rotations

1 Planar rotations

Definition: A planar rotation in \mathbb{R}^{n} is a linear map $R: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that there is a plane $P \subseteq \mathbb{R}^{n}$ (through the origin) satisfying

$$
\begin{aligned}
& R(P) \subseteq P \text { and }\left.R\right|_{P}=\text { some rotation of } P \\
& R\left(P^{\perp}\right) \subseteq P^{\perp} \text { and }\left.R\right|_{P^{\perp}}=\operatorname{id}_{P^{\perp}} .
\end{aligned}
$$

In other words, R rotates the plane P and leaves every vector of P^{\perp} where it is.

Example: The transformation $R: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with (standard) matrix

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]
$$

is a planar rotation in the $y z$-plane of \mathbb{R}^{3}.

Proposition 1: A planar rotation is an orthogonal transformation.

Proof: It suffices to check that $R: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserves lengths. For any $x \in \mathbb{R}^{n}$, consider the unique decomposition $x=p+w$ with $p \in P$ and $w \in P^{\perp}$. Then we have

$$
\begin{aligned}
\|R x\|^{2} & =\|R p+R w\|^{2} \text { since } R \text { is linear } \\
& =\|R p+w\|^{2} \text { since } R \text { is the identity on } P^{\perp} \\
& =\|R p\|^{2}+\|w\|^{2} \text { since } R p \perp w \\
& =\|p\|^{2}+\|w\|^{2} \text { since }\left.R\right|_{P} \text { is a rotation in } P \\
& =\|p+w\|^{2} \text { since } p \perp w \\
& =\|x\|^{2} .
\end{aligned}
$$

Proposition 2: A linear map $R: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a planar rotation if and only if there is an orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbb{R}^{n} in which the matrix of R is

$$
\left[\begin{array}{cc|c}
\cos \theta & -\sin \theta & \mathbf{0} \tag{1}\\
\sin \theta & \cos \theta & \\
\hline \mathbf{0} & & I
\end{array}\right]
$$

Proof: $\quad(\Leftarrow)$ If there is such an orthonormal basis, then consider the plane $P:=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$. We have $R(P) \subseteq P$ because the lower-left block is 0 , and $\left.R\right|_{P}$ is a rotation of P, because of the top-left block.
Moreover R satisfies $R v_{i}=v_{i}$ for $i \geq 3$ so that R is the identity on $\operatorname{Span}\left\{v_{3}, \ldots v_{n}\right\}=P^{\perp}$. The last equality holds because the basis $\left\{v_{1}, \ldots, v_{n}\right\}$ is orthogonal.
(\Rightarrow) Assume R is a planar rotation in a plane P. Let $\left\{v_{1}, v_{2}\right\}$ be an orthonormal basis of P. Then we have

$$
P v_{1}=(\cos \theta) v_{1}+(\sin \theta) v_{2}, P v_{2}=(-\sin \theta) v_{1}+(\cos \theta) v_{2}
$$

for some angle θ.
Complete $\left\{v_{1}, v_{2}\right\}$ to an orthonormal basis $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ of \mathbb{R}^{n}. Because v_{3}, \ldots, v_{n} are in P^{\perp}, we have $R v_{i}=v_{i}$ for $i \geq 3$. Therefore R has matrix (1) in the basis $\left\{v_{1}, \ldots, v_{n}\right\}$.

2 Orthogonal matrices as rotations and reflections

The main theorems of section $\S 6.5$ are the following.

Theorem 5.1. Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an orthogonal operator with $\operatorname{det} A=1$. Then there is an orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbb{R}^{n} in which the matrix of A is the block diagonal matrix

$$
\left[\begin{array}{ccccc}
R_{\theta_{1}} & & & & \\
& R_{\theta_{2}} & & & \\
& & \ddots & & \\
& & & R_{\theta_{k}} & \\
& & & & I_{n-2 k}
\end{array}\right]
$$

where $R_{\theta_{j}}$ is the 2-dimensional rotation

$$
R_{\theta_{j}}=\left[\begin{array}{cc}
\cos \theta_{j} & -\sin \theta_{j} \\
\sin \theta_{j} & \cos \theta_{j}
\end{array}\right]
$$

and $I_{n-2 k}$ denotes the $(n-2 k) \times(n-2 k)$ identity matrix.

Theorem 5.2. Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an orthogonal operator with $\operatorname{det} A=-1$. Then there is an orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbb{R}^{n} in which the matrix of A is the block diagonal matrix

$$
\left[\begin{array}{cccccc}
R_{\theta_{1}} & & & & & \\
& R_{\theta_{2}} & & & & \\
& & \ddots & & & \\
& & & R_{\theta_{k}} & & \\
& & & & I_{n-2 k-1} & \\
& & & & & -1
\end{array}\right]
$$

The theorems have the following geometric interpretation.

Corollary of 5.1: If $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is orthogonal with $\operatorname{det} A=1$, then A is a product of at most $\frac{n}{2}$ commuting planar rotations.

Proof: Let Q be an orthogonal matrix satisfying $A=Q B Q^{-1}=Q B Q^{T}$ with

$$
B=\left[\begin{array}{lllll}
R_{\theta_{1}} & & & & \\
& R_{\theta_{2}} & & & \\
& & \ddots & & \\
& & & R_{\theta_{k}} & \\
& & & & I_{n-2 k}
\end{array}\right]
$$

The columns of Q are the basis given by Thm 5.1. We can express B as the product

$$
B=\left[\begin{array}{ccccc}
R_{\theta_{1}} & & & & \\
& I_{2} & & & \\
& & \ddots & & \\
& & & I_{2} & \\
& & & & I_{n-2 k}
\end{array}\right]\left[\begin{array}{lllll}
I_{2} & & & & \\
& R_{\theta_{2}} & & & \\
& & \ddots & & \\
& & & I_{2} & \\
& & & & I_{n-2 k}
\end{array}\right] \cdots\left[\begin{array}{lllll}
I_{2} & & & & \\
& I_{2} & & & \\
& & \ddots & & \\
& & & R_{\theta_{k}} & \\
& & & & I_{n-2 k}
\end{array}\right]
$$

$$
=: B_{1} B_{2} \ldots B_{k}
$$

from which we obtain the factorization

$$
\begin{aligned}
A & =Q B Q^{-1} \\
& =\left(Q B_{1} Q^{-1}\right)\left(Q B_{2} Q^{-1}\right) \ldots\left(Q B_{k} Q^{-1}\right) \\
& =A_{1} A_{2} \ldots A_{k}
\end{aligned}
$$

in which each A_{i} is a planar rotation, by Prop. 2. Also note that the B_{i} commute with each other, and therefore so do the A_{i}.

Corollary of 5.2: If $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is orthogonal with $\operatorname{det} A=-1$, then A is a product of at most $\frac{n-1}{2}$ commuting planar rotations and a reflection which commutes with the rotations.

Proof: Let Q be an orthogonal matrix satisfying $A=Q B Q^{-1}=Q B Q^{T}$ with

$$
B=\left[\begin{array}{cccccc}
R_{\theta_{1}} & & & & & \\
& R_{\theta_{2}} & & & & \\
& & \ddots & & & \\
& & & R_{\theta_{k}} & & \\
& & & & I_{n-2 k-1} & \\
& & & & & -1
\end{array}\right]
$$

The columns of Q are the basis given by Thm 5.2. We can express B as the product

$$
\begin{aligned}
& B=\left[\begin{array}{lllll}
R_{\theta_{1}} & & & & \\
& I_{2} & & & \\
& & \ddots & & \\
& & & I_{2} & \\
& & & & I_{n-2 k}
\end{array}\right] \cdots\left[\begin{array}{lllllll}
I_{2} & & & & \\
& I_{2} & & & \\
& & \ddots & & \\
& & & R_{\theta_{k}} & \\
& & & & I_{n-2 k}
\end{array}\right]\left[\begin{array}{llllll}
I_{2} & & & & \\
& I_{2} & & & \\
& & \ddots & & \\
& & & I_{2} & \\
& & & & I_{n-2 k-1} & \\
& & & & & \\
& =: B_{1} B_{2} \ldots B_{k} B_{k+1}
\end{array}\right] \\
&
\end{aligned}
$$

from which we obtain the factorization

$$
\begin{aligned}
A & =Q B Q^{-1} \\
& =\left(Q B_{1} Q^{-1}\right)\left(Q B_{2} Q^{-1}\right) \ldots\left(Q B_{k} Q^{-1}\right)\left(Q B_{k+1} Q^{-1}\right) \\
& =A_{1} A_{2} \ldots A_{k} A_{k+1}
\end{aligned}
$$

in which each $A_{i}(1 \leq i \leq k)$ is a planar rotation, whereas A_{k+1} is a reflection, which flips the vector v_{n}. As before, the B_{i} commute with each other, and therefore so do the A_{i}.

3 Examples

Here are a few simple examples.

Example: The transformation $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with matrix

$$
A=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]
$$

is a rotation in the $y z$-plane composed with a reflection across the $y z$-plane (flipping the x-axis), and the two commute:

$$
A=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Example: The transformation $A: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ with matrix

$$
A=\left[\begin{array}{cccc}
\cos \theta_{1} & 0 & -\sin \theta_{1} & 0 \\
0 & \cos \theta_{2} & 0 & -\sin \theta_{2} \\
\sin \theta_{1} & 0 & \cos \theta_{1} & 0 \\
0 & \sin \theta_{2} & 0 & \cos \theta_{2}
\end{array}\right]
$$

is a rotation in the $x_{1} x_{3}$-plane of \mathbb{R}^{4} composed with a rotation in the $x_{2} x_{4}$-plane, and the two commute:

$$
\begin{aligned}
A & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta_{2} & 0 & -\sin \theta_{2} \\
0 & 0 & 1 & 0 \\
0 & \sin \theta_{2} & 0 & \cos \theta_{2}
\end{array}\right]\left[\begin{array}{cccc}
\cos \theta_{1} & 0 & -\sin \theta_{1} & 0 \\
0 & 1 & 0 & 0 \\
\sin \theta_{1} & 0 & \cos \theta_{1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\cos \theta_{1} & 0 & -\sin \theta_{1} & 0 \\
0 & 1 & 0 & 0 \\
\sin \theta_{1} & 0 & \cos \theta_{1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta_{2} & 0 & -\sin \theta_{2} \\
0 & 0 & 1 & 0 \\
0 & \sin \theta_{2} & 0 & \cos \theta_{2}
\end{array}\right] .
\end{aligned}
$$

Let us now illustrate the theorems and their proofs with a more substantial example.

Example: Consider the orthogonal matrix

$$
A=\frac{1}{6}\left[\begin{array}{cccc}
1 & -5 & -3 & 1 \\
5 & -1 & 3 & -1 \\
1 & 1 & -3 & -5 \\
3 & 3 & -3 & 3
\end{array}\right]
$$

Computing a diagonalization of A yields $A=U D U^{-1}$ where

$$
D=\left[\begin{array}{cccc}
i & 0 & 0 & 0 \\
0 & -i & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

is diagonal and

$$
U=\left[\begin{array}{llll}
v & \bar{v} & v_{3} & v_{4}
\end{array}\right]=\left[\begin{array}{cccc}
-2+i & -2-i & 1 & 0 \\
1+2 i & 1-2 i & 0 & -1 \\
i & -i & -1 & 2 \\
1 & 1 & 2 & 1
\end{array}\right]
$$

has orthogonal columns (we dropped the normalization condition for simplicity).
Note that the eigenvalues $\pm i$ can be written as $e^{i \alpha}$ where α happens to be $\frac{\pi}{2}$. We will use the real and imaginary parts of the eigenvector v corresponding to the eigenvalue $\lambda=i$. We have:

$$
\operatorname{Re} v=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
1
\end{array}\right], \operatorname{Im} v=\left[\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& A(\operatorname{Re} v)=\operatorname{Re}(\lambda v)=(\cos \alpha) \operatorname{Re} v-(\sin \alpha) \operatorname{Im} v=-\operatorname{Im} v \\
& A(\operatorname{Im} v)=\operatorname{Im}(\lambda v)=(\sin \alpha) \operatorname{Re} v+(\cos \alpha) \operatorname{Im} v=\operatorname{Re} v
\end{aligned}
$$

so that in the (orthogonal) basis $\left\{\operatorname{Re} v, \operatorname{Im} v, v_{3}, v_{4}\right\}$ the transformation A has matrix

$$
B=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

Writing $Q=\left[\begin{array}{llll}\operatorname{Re} v & \operatorname{Im} v & v_{3} & v_{4}\end{array}\right]$, we obtain a factorization

$$
\begin{aligned}
A & =Q B Q^{-1} \\
& =\left(Q\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] Q^{-1}\right)\left(Q\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] Q^{-1}\right) \\
& =A_{1} A_{2}
\end{aligned}
$$

where A_{1} is a planar rotation in the plane $\operatorname{Span}\{\operatorname{Re} v, \operatorname{Im} v\}=\operatorname{Span}\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 0\end{array}\right]\right\}$ and A_{2} is the reflection which flips the vector $v_{4}=\left[\begin{array}{c}0 \\ -1 \\ 2 \\ 1\end{array}\right]$.

