Math 416 - Abstract Linear Algebra
Fall 2011, section E1
Orthogonal matrices and rotations

1 Planar rotations
Definition: A planar rotation in R" is a linear map R: R” — R” such that there is a plane
P C R™ (through the origin) satisfying

R(P) C P and R|p = some rotation of P

R(P*) C P* and R|p: =idp. .

In other words, R rotates the plane P and leaves every vector of P+ where it is.

Example: The transformation R: R* — R? with (standard) matrix

1 0 0
0 cosf —sind
0 sinf cosf

is a planar rotation in the yz-plane of R3.
Proposition 1: A planar rotation is an orthogonal transformation.

Proof: It suffices to check that R: R™ — R"™ preserves lengths. For any = € R"”, consider the
unique decomposition z = p + w with p € P and w € P*. Then we have

| Rz||* = ||[Rp + Rw|)? since R is linear

= ||Rp + wl||? since R is the identity on P+

= ||Rpl|]* + ||wl||* since Rp L w

= [|p||* + ||w]||?* since R|p is a rotation in P

= ||p + w||* since p L w

= [l]*. m
Proposition 2: A linear map R: R" — R" is a planar rotation if and only if there is an
orthonormal basis {vy,...,v,} of R™ in which the matrix of R is

cosf) —sind 0
sinf cos6
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Proof: (<) If there is such an orthonormal basis, then consider the plane P := Span{uvy, vs}.
We have R(P) C P because the lower-left block is 0, and R|p is a rotation of P, because of the
top-left block.

Moreover R satisfies Rv; = v; for i > 3 so that R is the identity on Span{vs,...v,} = P*. The
last equality holds because the basis {v1,...,v,} is orthogonal.

(=) Assume R is a planar rotation in a plane P. Let {v;,v,} be an orthonormal basis of P.
Then we have

Puvy = (cos0)vy + (sin0)vy, Pvg = (—sinf)v; + (cosb)vy
for some angle 6.

Complete {v1,v2} to an orthonormal basis {vy, va,vs,...,v,} of R". Because v, ..., v, are in
P+, we have Rv; = v; for i > 3. Therefore R has matrix (1) in the basis {vy,...,v,}. B

2 Orthogonal matrices as rotations and reflections

The main theorems of section §6.5 are the following.

Theorem 5.1. Let A: R” — R" be an orthogonal operator with det A = 1. Then there is an
orthonormal basis {vy,...,v,} of R" in which the matrix of A is the block diagonal matrix

Ry,
Ry,

Ry

k
Iank_

where Ry, is the 2-dimensional rotation

|

cost; —sin 8]}
sinf; cosb;

and I,y denotes the (n — 2k) x (n — 2k) identity matrix.

Theorem 5.2. Let A: R" — R” be an orthogonal operator with det A = —1. Then there is
an orthonormal basis {v1,...,v,} of R" in which the matrix of A is the block diagonal matrix

Ry,
Ry,

Ry

k
Inf2k71
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The theorems have the following geometric interpretation.

Corollary of 5.1: If A: R — R” is orthogonal with det A = 1, then A is a product of at
most 3 commuting planar rotations.



Proof: Let Q be an orthogonal matrix satisfying A = QBQ ! = QBQT with

Ry,
Ry,

Ry,

In—2k_

The columns of ) are the basis given by Thm 5.1. We can express B as the product

Ry, I I
I Ry, I

[n—2k [n—2k ]n—2k_

= BlBQBk

from which we obtain the factorization

A=QBQ
= (QB1Q)(QBQ™") ... (QB.Q™)
= A1A2 ce e Ak

in which each A; is a planar rotation, by Prop. 2. Also note that the B; commute with each
other, and therefore so do the A;. W

Corollary of 5.2: If A: R" — R" is orthogonal with det A = —1, then A is a product of at

most ”T_l commuting planar rotations and a reflection which commutes with the rotations.

Proof: Let Q be an orthogonal matrix satisfying A = QBQ ! = QBQT with

Ry,
Ry,

k
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The columns of ) are the basis given by Thm 5.2. We can express B as the product

- - - - L




from which we obtain the factorization

A=QBQ
= (QBQ7)(QBQ7")...(QB:Q™)(QBrQ ™)
== AlAQ “e e AkAk+1

in which each A; (1 <i < k) is a planar rotation, whereas Ay, is a reflection, which flips the
vector v,. As before, the B; commute with each other, and therefore so do the A;. B

3 Examples

Here are a few simple examples.

Example: The transformation A: R® — R? with matrix

-1 0 0
A= 0 cosf —sinf
0 sinf cosf

is a rotation in the yz-plane composed with a reflection across the yz-plane (flipping the z-axis),
and the two commute:

-1 0 O] |1 O 0 1 0 0 -1 00
A=|10 1 0| |0 cos@ —sinf| = |0 cosf —sind 0 10
0 0 1 |0 sinf cosé 0 sinf cosf 0 01

Example: The transformation A: R* — R* with matrix

cos 6, 0 —sin 6, 0
A 0 cos 65 0 —sin 6y
sin 6, 0 cos 6, 0
0 sin 6, 0 cos

is a rotation in the z;z3-plane of R* composed with a rotation in the xyz4-plane, and the two
commute:

1 0 0 0 [cosf; 0 —sinf; O
A 0 cosfy 0 —sinb, 0 1 0 0
0 0 1 0 sinf;y 0 cosf; O
|0 sinfy O costh | | O 0 0 1]
[cosf; 0 —sinf; 0] [1 0 0 0
B 0 1 0 0] [0 costly O —sinfy
~ |sin6; 0O cos6#, 0| |0 O 1 0
| 0 0 0 1] [0 sinfy 0 costy |

Let us now illustrate the theorems and their proofs with a more substantial example.



Example: Consider the orthogonal matrix

1 -5 -3 1
15 -1 3 -1
A_é 1 1 -3 -5
3 3 -3 3

Computing a diagonalization of A yields A = UDU~! where

i 0 0 0
0 - 0 0
D=10 0 1 o0
0 0 0 —1

is diagonal and

247 —2—1 1 0

142 1—-2¢ 0 -1
i - =1 2
1 1 2 1

U:[U U s ’04}:

has orthogonal columns (we dropped the normalization condition for simplicity).
Note that the eigenvalues 4=i can be written as e’® where o happens to be 5. We will use the
real and imaginary parts of the eigenvector v corresponding to the eigenvalue A = 7. We have:

—2

, Imv =

O = N =

1
0
1

A(Rev) = Re(Av) = (cosa) Rev — (sina) Imv = —Imw
A(Imwv) = Im(\v) = (sina) Rev + (cosa) Imv = Rew

so that in the (orthogonal) basis {Rewv,Im v, v3,v4} the transformation A has matrix

0 1.0 O
-1 0 0 0
B= 0 01 O
0 00 -1

Writing @ = [Rev Imv w3 "04}, we obtain a factorization

A=QBQ™
0 100 10 0 O
=t o00 0] 010 0| .,
0 0 01 00 0 —1
= A1Ay
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where A; is a planar rotation in the plane Span{Rewv,Imv} = Span{ (1) , f } and A, is
1 0
0
the reflection which flips the vector v, = _21 .
1



