
Math 416 - Abstract Linear Algebra
Fall 2011, section E1

Orthogonal matrices and rotations

1 Planar rotations

Definition: A planar rotation in Rn is a linear map R : Rn → Rn such that there is a plane
P ⊆ Rn (through the origin) satisfying

R(P ) ⊆ P and R|P = some rotation of P

R(P⊥) ⊆ P⊥ and R|P⊥ = idP⊥ .

In other words, R rotates the plane P and leaves every vector of P⊥ where it is.

Example: The transformation R : R3 → R3 with (standard) matrix1 0 0
0 cos θ − sin θ
0 sin θ cos θ


is a planar rotation in the yz-plane of R3.

Proposition 1: A planar rotation is an orthogonal transformation.

Proof: It suffices to check that R : Rn → Rn preserves lengths. For any x ∈ Rn, consider the
unique decomposition x = p+ w with p ∈ P and w ∈ P⊥. Then we have

‖Rx‖2 = ‖Rp+Rw‖2 since R is linear

= ‖Rp+ w‖2 since R is the identity on P⊥

= ‖Rp‖2 + ‖w‖2 since Rp ⊥ w

= ‖p‖2 + ‖w‖2 since R|P is a rotation in P

= ‖p+ w‖2 since p ⊥ w

= ‖x‖2.�

Proposition 2: A linear map R : Rn → Rn is a planar rotation if and only if there is an
orthonormal basis {v1, . . . , vn} of Rn in which the matrix of R is

cos θ − sin θ 0
sin θ cos θ

0 I

 . (1)
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Proof: (⇐) If there is such an orthonormal basis, then consider the plane P := Span{v1, v2}.
We have R(P ) ⊆ P because the lower-left block is 0, and R|P is a rotation of P , because of the
top-left block.

Moreover R satisfies Rvi = vi for i ≥ 3 so that R is the identity on Span{v3, . . . vn} = P⊥. The
last equality holds because the basis {v1, . . . , vn} is orthogonal.

(⇒) Assume R is a planar rotation in a plane P . Let {v1, v2} be an orthonormal basis of P .
Then we have

Pv1 = (cos θ)v1 + (sin θ)v2, Pv2 = (− sin θ)v1 + (cos θ)v2

for some angle θ.

Complete {v1, v2} to an orthonormal basis {v1, v2, v3, . . . , vn} of Rn. Because v3, . . . , vn are in
P⊥, we have Rvi = vi for i ≥ 3. Therefore R has matrix (1) in the basis {v1, . . . , vn}. �

2 Orthogonal matrices as rotations and reflections

The main theorems of section §6.5 are the following.

Theorem 5.1. Let A : Rn → Rn be an orthogonal operator with detA = 1. Then there is an
orthonormal basis {v1, . . . , vn} of Rn in which the matrix of A is the block diagonal matrix

Rθ1

Rθ2
. . .

Rθk

In−2k


where Rθj

is the 2-dimensional rotation

Rθj
=

[
cos θj − sin θj
sin θj cos θj

]
and In−2k denotes the (n− 2k)× (n− 2k) identity matrix.

Theorem 5.2. Let A : Rn → Rn be an orthogonal operator with detA = −1. Then there is
an orthonormal basis {v1, . . . , vn} of Rn in which the matrix of A is the block diagonal matrix

Rθ1

Rθ2
. . .

Rθk

In−2k−1

−1


.

The theorems have the following geometric interpretation.

Corollary of 5.1: If A : Rn → Rn is orthogonal with detA = 1, then A is a product of at
most n

2
commuting planar rotations.
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Proof: Let Q be an orthogonal matrix satisfying A = QBQ−1 = QBQT with

B =


Rθ1

Rθ2
. . .

Rθk

In−2k

 .

The columns of Q are the basis given by Thm 5.1. We can express B as the product

B =


Rθ1

I2
. . .

I2
In−2k




I2

Rθ2
. . .

I2
In−2k

 . . .

I2

I2
. . .

Rθk

In−2k


=: B1B2 . . . Bk

from which we obtain the factorization

A = QBQ−1

= (QB1Q
−1)(QB2Q

−1) . . . (QBkQ
−1)

= A1A2 . . . Ak

in which each Ai is a planar rotation, by Prop. 2. Also note that the Bi commute with each
other, and therefore so do the Ai. �

Corollary of 5.2: If A : Rn → Rn is orthogonal with detA = −1, then A is a product of at
most n−1

2
commuting planar rotations and a reflection which commutes with the rotations.

Proof: Let Q be an orthogonal matrix satisfying A = QBQ−1 = QBQT with

B =



Rθ1

Rθ2
. . .

Rθk

In−2k−1

−1


.

The columns of Q are the basis given by Thm 5.2. We can express B as the product

B =


Rθ1

I2
. . .

I2
In−2k

 . . .

I2

I2
. . .

Rθk

In−2k





I2
I2

. . .

I2
In−2k−1

−1


=: B1B2 . . . BkBk+1
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from which we obtain the factorization

A = QBQ−1

= (QB1Q
−1)(QB2Q

−1) . . . (QBkQ
−1)(QBk+1Q

−1)

= A1A2 . . . AkAk+1

in which each Ai (1 ≤ i ≤ k) is a planar rotation, whereas Ak+1 is a reflection, which flips the
vector vn. As before, the Bi commute with each other, and therefore so do the Ai. �

3 Examples

Here are a few simple examples.

Example: The transformation A : R3 → R3 with matrix

A =

−1 0 0
0 cos θ − sin θ
0 sin θ cos θ


is a rotation in the yz-plane composed with a reflection across the yz-plane (flipping the x-axis),
and the two commute:

A =

−1 0 0
0 1 0
0 0 1

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

−1 0 0
0 1 0
0 0 1

 .
Example: The transformation A : R4 → R4 with matrix

A =


cos θ1 0 − sin θ1 0

0 cos θ2 0 − sin θ2

sin θ1 0 cos θ1 0
0 sin θ2 0 cos θ2


is a rotation in the x1x3-plane of R4 composed with a rotation in the x2x4-plane, and the two
commute:

A =


1 0 0 0
0 cos θ2 0 − sin θ2

0 0 1 0
0 sin θ2 0 cos θ2




cos θ1 0 − sin θ1 0
0 1 0 0

sin θ1 0 cos θ1 0
0 0 0 1



=


cos θ1 0 − sin θ1 0

0 1 0 0
sin θ1 0 cos θ1 0

0 0 0 1




1 0 0 0
0 cos θ2 0 − sin θ2

0 0 1 0
0 sin θ2 0 cos θ2

 .
Let us now illustrate the theorems and their proofs with a more substantial example.
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Example: Consider the orthogonal matrix

A =
1

6


1 −5 −3 1
5 −1 3 −1
1 1 −3 −5
3 3 −3 3

 .
Computing a diagonalization of A yields A = UDU−1 where

D =


i 0 0 0
0 −i 0 0
0 0 1 0
0 0 0 −1


is diagonal and

U =
[
v v v3 v4

]
=


−2 + i −2− i 1 0
1 + 2i 1− 2i 0 −1
i −i −1 2
1 1 2 1


has orthogonal columns (we dropped the normalization condition for simplicity).

Note that the eigenvalues ±i can be written as eiα where α happens to be π
2
. We will use the

real and imaginary parts of the eigenvector v corresponding to the eigenvalue λ = i. We have:

Re v =


−2
1
0
1

 , Im v =


1
2
1
0



A(Re v) = Re(λv) = (cosα) Re v − (sinα) Im v = − Im v

A(Im v) = Im(λv) = (sinα) Re v + (cosα) Im v = Re v

so that in the (orthogonal) basis {Re v, Im v, v3, v4} the transformation A has matrix

B =


0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 −1

 .
Writing Q =

[
Re v Im v v3 v4

]
, we obtain a factorization

A = QBQ−1

= (Q


0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

Q−1)(Q


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

Q−1)

= A1A2
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where A1 is a planar rotation in the plane Span{Re v, Im v} = Span{


−2
1
0
1

 ,


1
2
1
0

} and A2 is

the reflection which flips the vector v4 =


0
−1
2
1

.

6


