
Math 416 - Abstract Linear Algebra
Fall 2011, section E1
Practice midterm 3

Name:

• This is a practice exam. The real exam will consist of 4 problems.

• In the real exam, no calculators, electronic devices, books, or notes may be used.

• Show your work. No credit for answers without justification.

• Good luck!

1. /15

2. /15

3. /15

4. /10

5. /10

6. /10

Total: /75
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Section 4.2

Notation: Given an n × n matrix A, let us denote by µalg(λ) and µgeo(λ) the algebraic and
geometric multiplicities, respectively, of an eigenvalue λ of A. In fact, both notions make sense
for any scalar λ: both are zero when λ is not an eigenvalue of A.

Problem 1a. (5 pts) Let A be an n× n matrix. Prove the inequality

rankA ≥
∑
λ 6=0

µalg(λ). (1)

b. (5 pts) When A is diagonalizable, prove that (1) is in fact an equality.
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c. (5 pts) When A is non-diagonalizable, prove that we cannot conclude (in general) whether
(1) is an equality or a strict inequality.

In other words, provide an example of non-diagonalizable matrix A such that (1) is an equality
and an example of non-diagonalizable matrix B such that (1) is a strict inequality.
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Section 5.1

Problem 2. Consider the complex vector space Cn×n of complex n× n matrices. One of the
following two formulas defines a complex inner product on Cn×n:

1. (A,B) = tr(AB)

2. (A,B) = tr(AB∗)

where trM :=
∑n

i=1Mii denotes the trace of a square matrix (sum of the diagonal entries) and

B∗ := B
T

denotes the conjugate transpose.

a. (10 pts) Which formula is an inner product? Prove your answer.
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b. (5 pts) Prove that the other formula is not an inner product.
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Sections 5.2-5.3

Problem 3a. (6 pts) Consider the vectors a1 =

1
1
0

 , a2 =

0
1
1

 in R3. Find the projection

matrix onto the plane Span{a1, a2} (directly, without using part b).

b. (5 pts) Consider the vector v =

 1
−1
1

 in R3. Find the projection matrix onto the line

Span{v} (directly, without using part a).
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c. (3 pts) Show Span{v} = Span{a1, a2}⊥.

d. (1 pt) Check that the matrices you obtained in parts (a) and (b) add up to I, the 3× 3
identity matrix.

Moral: Since projections onto a subspace E or its orthogonal complement E⊥ determine each
other via the relation ProjE + ProjE⊥ = I, we can compute one or the other, whichever is easier.
The one with the smaller dimension is generally easier, e.g. part (b) was easier than (a).
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Sections 5.4

Problem 4. (10 pts) Find the least squares fit of the form y(x) = c + d(2x) (for some
c, d ∈ R) through the data points (xi, yi) = (0, 2); (1, 3); (2, 6).
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Sections 5.5-5.6

Problem 5. Let V be a complex inner product space, and consider linear maps A : V → V .

For each statement below, say if the statement is true or false (i.e. always true or not always
true). Prove your answer.

a. (2.5 pts) If A and B are self-adjoint, then A+B is also self-adjoint.

b. (2.5 pts) If A and B are self-adjoint, then AB is also self-adjoint.
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c. (2.5 pts) If A and B are unitary, then A+B is also unitary.

d. (2.5 pts) If A and B are unitary, then AB is also unitary.
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Sections 6.2

Problem 6a. (2 pts) Which of the following matrices are diagonalizable by an orthogonal
(i.e. unitary and real) matrix? Circle the answer(s) and explain.[

2 1
0 3

] [
1 1
1 1

] [
0 −1
1 0

]

b. (8 pts) Let A be a matrix you selected in part (a). Write a diagonalization of A by an
orthogonal matrix U .
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