Math 416 - Abstract Linear Algebra
 Fall 2011, section E1
 Some properties of matrices

Let A be an $m \times n$ matrix. We discuss two interesting properties that A can have, which will be stated in several equivalent ways.

Property 1

Proposition: The following are equivalent.

1. The columns of A are linearly independent.
2. The system $A x=0$ has the unique solution $x=0$.
3. The null space of A is trivial: Null $A=\{0\} \subset \mathbb{R}^{n}$.
4. The system $A x=b$ has at most one solution for any $b \in \mathbb{R}^{m}$.
5. The echelon form of A has a pivot in every column.
6. A has full column rank, i.e. $\operatorname{dim} \operatorname{Col} A=n$.
7. $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is injective ${ }^{1}$.
8. A is left invertible.

Property 2

Proposition: The following are equivalent.

1. The columns of A span \mathbb{R}^{m}.
2. The system $A x=b$ has a solution for any $b \in \mathbb{R}^{m}$.
3. $\operatorname{Col} A=\mathbb{R}^{m}$.
4. The echelon form of A has a pivot in every row.
5. A has full row rank, i.e. dim Row $A=m$.
6. $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is surjective ${ }^{2}$.
7. A is right invertible.

[^0]\[

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] & & \text { Yes }
\end{aligned}
$$ Yes
\]

- When $m<n$ (more columns than rows), property 1 cannot hold.
- When $m=n$ (square matrix), property 1 is equivalent to property 2 .
- When $m>n$ (more rows than columns), property 2 cannot hold.
- That is all we can say in general.

Remark: Only left invertibility and right invertibility require a bit of work to show (and are arguably less important). Feel free to ignore them. The other equivalences in the propositions are straightforward and important to understand. It is a good exercise to work them out.

We can also combine properties 1 and 2. As noted above, this can only happen for square matrices $(m=n)$.

Proposition: The following are equivalent.

1. The columns of A form a basis of \mathbb{R}^{m}.
2. The system $A x=b$ has a unique solution for any $b \in \mathbb{R}^{m}$.
3. Null $A=\{0\}$ and $\operatorname{Col} A=\mathbb{R}^{m}$.
4. The echelon form of A has a pivot in every row and every column.
5. The reduced echelon form of A is the identity matrix I.
6. A is a product of elementary matrices.
7. $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is bijective ${ }^{3}$.
8. A is invertible.
9. A is square and satisfies property 1.
10. A is square and satisfies property 2 .
11. $\operatorname{det} A \neq 0$.
[^1]
[^0]: ${ }^{1}$ A function $f: X \rightarrow Y$ is injective if it satisfies $x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$; equivalently, $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow$ $x_{1}=x_{2}$. In other words, f doesn't collapse points together, f is an "inclusion" of a small set X into a big set Y, f doesn't lose information.
 ${ }^{2}$ A function $f: X \rightarrow Y$ is surjective if for every $y \in Y$, there is an $x \in X$ satisfying $f(x)=y$. In other words, f "hits everything", f sends a big set X onto a small set Y, the image of f is the whole target Y.

[^1]: ${ }^{3}$ A function $f: X \rightarrow Y$ is bijective if it is both injective and surjective. In other words, for every $y \in Y$, there is a unique $x \in X$ satisfying $f(x)=y$.

