
Math 416 - Abstract Linear Algebra
Fall 2011, section E1

Least squares solution

1. Curve fitting

The least squares solution can be used to fit certain functions through data points.

Example: Find the best fit line through the points (1, 0), (2, 1), (3, 1).

Solution: We are looking for a line with equation y = a + bx that would ideally go through
all the data points, i.e. satisfy all the equations

a + b(1) = 0

a + b(2) = 1

a + b(3) = 1.

In matrix form, we want the unknown coefficients

[
a
b

]
to satisfy the system

1 1
1 2
1 3

[a
b

]
=

0
1
1


but the system has no solution. Instead, we find the least squares fit, i.e. minimize the sum of
the squares of the errors

3∑
i=1

|(a + bxi)− yi|2

which is precisely finding the least squares solution of the system above. Writing the system as
A~c = ~y, the normal equation is

AT A~c = AT~y

and we compute

AT A =

[
1 1 1
1 2 3

]1 1
1 2
1 3

 =

[
3 6
6 14

]

AT~y =

[
1 1 1
1 2 3

]0
1
1

 =

[
2
5

]
.

The normal equation has the unique solution

~c =

[
3 6
6 14

]−1 [
2
5

]
=

1

6

[
14 −6
−6 3

] [
2
5

]
=

1

6

[
−2
3

]
=

[
−1

3
1
2

]
so that the best fit line through the data points is y = −1

3
+ 1

2
x.
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Remark: If we hate the formula for the inverse of a 2 × 2 matrix, or if we need to solve a
bigger system, we can always use Gauss-Jordan:[

3 6 2
6 14 5

]
∼
[
3 6 2
0 2 1

]
∼
[
3 0 −1
0 2 1

]
∼
[
1 0 −1

3

0 1 1
2

]
.

The unique solution to the system is indeed

[
−1

3
1
2

]
.

2. Arbitrary inner product spaces

Just like Gram-Schmidt, the least squares method works in any inner product space V , not just
Rn (or Cn). Assume that the subspace E ⊆ V onto which we are projecting is finite-dimensional.

Example: Consider the real inner product space C[0, 1] := {f : [0, 1]→ R | f is continuous }
with its usual inner product

(f, g) =

∫ 1

0

f(t)g(t) dt.

Find the best approximation of the function t2 by a polynomial of degree at most one.

Solution using least squares: We are looking for a polynomial of degree at most one a+ bt
that would ideally satisfy

a + bt = t2

which is clearly impossible, i.e. t2 /∈ Span{1, t}. The best approximation is the vector in
Span{1, t} minimizing the error vector

a + bt− t2

which is achieved exactly when the error vector is orthogonal to Span{1, t}. This imposes two
conditions: {

(a + bt− t2, 1) = 0

(a + bt− t2, t) = 0

which we can rewrite as {
a(1, 1) + b(t, 1) = (t2, 1)

a(1, t) + b(t, t) = (t2, t)

or in matrix form: [
(1, 1) (t, 1)
(t, 1) (t, t)

] [
a
b

]
=

[
(t2, 1)
(t2, t)

]
.

(This is the normal equation. The coefficient matrix here plays the role of AT A in the previous
example, i.e. the square matrix of all possible inner products between vectors in the basis of E,
in this case {1, t}. Likewise, the right-hand side plays the role of AT~y in the previous example,
i.e. the list of all possible inner products between the basis vectors {1, t} of E and the vector
t2 not in E which we want to project down to E.)

Computing the inner products involved, the system can be written as[
1 1

2
1
3

1
2

1
3

1
4

]
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which we now solve:[
1 1

2
1
3

1
2

1
3

1
4

]
∼
[
1 1

2
1
3

0 1
12

1
12

]
∼
[
1 1

2
1
3

0 1 1

]
∼
[
1 0 −1

6

0 1 1

]
.

The least squares solution is

[
a
b

]
=

[
−1

6

1

]
so that the best approximation of t2 by a polynomial

of degree at most one is −1
6

+ t.

Remark: If we hate Gauss-Jordan, we can always use the formula for the inverse of a 2× 2
matrix, so that the unique solution to the system is[

1 1
2

1
2

1
3

]−1 [1
3
1
4

]
=

1

1/12

[
1
3
−1

2

−1
2

1

] [
1
3
1
4

]
=

[
1
3
−1

2

−1
2

1

] [
4
3

]
=

1

6

[
2 −3
−3 6

] [
4
3

]
=

1

6

[
−1
6

]
=

[
−1

6

1

]
.

http://www.youtube.com/watch?v=lBdASZNPIv8

Solution using Gram-Schmidt: In a previous exercise, we obtained the orthonormal basis
{u1 = 1, u2 =

√
3(2t− 1)} of Span{1, t}. Using this, we compute the projection

Proj{1,t}(t
2) = Proj{u1,u2}(t

2)

= (t2, u1)u1 + (t2, u2)u2

= (t2, 1) 1 + (t2,
√

3(2t− 1))
√

3(2t− 1)

=
1

3
+ 3

(
2(t2, t)− (t2, 1)

)
(2t− 1)

=
1

3
+ 3

(
2

4
− 1

3

)
(2t− 1)

=
1

3
+

1

2
(2t− 1)

= −1

6
+ t.
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