Math 416 - Abstract Linear Algebra
 Fall 2011, section E1
 Least squares solution

1. Curve fitting

The least squares solution can be used to fit certain functions through data points.

Example: Find the best fit line through the points $(1,0),(2,1),(3,1)$.

Solution: We are looking for a line with equation $y=a+b x$ that would ideally go through all the data points, i.e. satisfy all the equations

$$
\left\{\begin{array}{l}
a+b(1)=0 \\
a+b(2)=1 \\
a+b(3)=1
\end{array}\right.
$$

In matrix form, we want the unknown coefficients $\left[\begin{array}{l}a \\ b\end{array}\right]$ to satisfy the system

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

but the system has no solution. Instead, we find the least squares fit, i.e. minimize the sum of the squares of the errors

$$
\sum_{i=1}^{3}\left|\left(a+b x_{i}\right)-y_{i}\right|^{2}
$$

which is precisely finding the least squares solution of the system above. Writing the system as $A \vec{c}=\vec{y}$, the normal equation is

$$
A^{T} A \vec{c}=A^{T} \vec{y}
$$

and we compute

$$
\begin{gathered}
A^{T} A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]=\left[\begin{array}{ll}
3 & 6 \\
6 & 14
\end{array}\right] \\
A^{T} \vec{y}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
5
\end{array}\right] .
\end{gathered}
$$

The normal equation has the unique solution

$$
\vec{c}=\left[\begin{array}{cc}
3 & 6 \\
6 & 14
\end{array}\right]^{-1}\left[\begin{array}{l}
2 \\
5
\end{array}\right]=\frac{1}{6}\left[\begin{array}{cc}
14 & -6 \\
-6 & 3
\end{array}\right]\left[\begin{array}{l}
2 \\
5
\end{array}\right]=\frac{1}{6}\left[\begin{array}{c}
-2 \\
3
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{3} \\
\frac{1}{2}
\end{array}\right]
$$

so that the best fit line through the data points is $y=-\frac{1}{3}+\frac{1}{2} x$.

Remark: If we hate the formula for the inverse of a 2×2 matrix, or if we need to solve a bigger system, we can always use Gauss-Jordan:

$$
\left[\begin{array}{cc|c}
3 & 6 & 2 \\
6 & 14 & 5
\end{array}\right] \sim\left[\begin{array}{ll|l}
3 & 6 & 2 \\
0 & 2 & 1
\end{array}\right] \sim\left[\begin{array}{cc|c}
3 & 0 & -1 \\
0 & 2 & 1
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & 0 & -\frac{1}{3} \\
0 & 1 & \frac{1}{2}
\end{array}\right]
$$

The unique solution to the system is indeed $\left[\begin{array}{c}-\frac{1}{3} \\ \frac{1}{2}\end{array}\right]$.

2. Arbitrary inner product spaces

Just like Gram-Schmidt, the least squares method works in any inner product space V, not just \mathbb{R}^{n} (or \mathbb{C}^{n}). Assume that the subspace $E \subseteq V$ onto which we are projecting is finite-dimensional.

Example: Consider the real inner product space $C[0,1]:=\{f:[0,1] \rightarrow \mathbb{R} \mid f$ is continuous $\}$ with its usual inner product

$$
(f, g)=\int_{0}^{1} f(t) g(t) \mathrm{dt}
$$

Find the best approximation of the function t^{2} by a polynomial of degree at most one.

Solution using least squares: We are looking for a polynomial of degree at most one $a+b t$ that would ideally satisfy

$$
a+b t=t^{2}
$$

which is clearly impossible, i.e. $t^{2} \notin \operatorname{Span}\{1, t\}$. The best approximation is the vector in Span $\{1, t\}$ minimizing the error vector

$$
a+b t-t^{2}
$$

which is achieved exactly when the error vector is orthogonal to $\operatorname{Span}\{1, t\}$. This imposes two conditions:

$$
\left\{\begin{array}{l}
\left(a+b t-t^{2}, 1\right)=0 \\
\left(a+b t-t^{2}, t\right)=0
\end{array}\right.
$$

which we can rewrite as

$$
\left\{\begin{array}{l}
a(1,1)+b(t, 1)=\left(t^{2}, 1\right) \\
a(1, t)+b(t, t)=\left(t^{2}, t\right)
\end{array}\right.
$$

or in matrix form:

$$
\left[\begin{array}{cc}
(1,1) & (t, 1) \\
(t, 1) & (t, t)
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
\left(t^{2}, 1\right) \\
\left(t^{2}, t\right)
\end{array}\right]
$$

(This is the normal equation. The coefficient matrix here plays the role of $A^{T} A$ in the previous example, i.e. the square matrix of all possible inner products between vectors in the basis of E, in this case $\{1, t\}$. Likewise, the right-hand side plays the role of $A^{T} \vec{y}$ in the previous example, i.e. the list of all possible inner products between the basis vectors $\{1, t\}$ of E and the vector t^{2} not in E which we want to project down to E.)
Computing the inner products involved, the system can be written as

$$
\left[\begin{array}{cc|c}
1 & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4}
\end{array}\right]
$$

which we now solve:

$$
\left[\begin{array}{cc|c}
1 & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4}
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & \frac{1}{2} & \frac{1}{3} \\
0 & \frac{1}{12} & \frac{1}{12}
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & \frac{1}{2} & \frac{1}{3} \\
0 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & 0 & -\frac{1}{6} \\
0 & 1 & 1
\end{array}\right] .
$$

The least squares solution is $\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{c}-\frac{1}{6} \\ 1\end{array}\right]$ so that the best approximation of t^{2} by a polynomial of degree at most one is $-\frac{1}{6}+t$.

Remark: If we hate Gauss-Jordan, we can always use the formula for the inverse of a 2×2 matrix, so that the unique solution to the system is

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{3}
\end{array}\right]^{-1}\left[\begin{array}{l}
\frac{1}{3} \\
\frac{1}{4}
\end{array}\right] } & =\frac{1}{1 / 12}\left[\begin{array}{cc}
\frac{1}{3} & -\frac{1}{2} \\
-\frac{1}{2} & 1
\end{array}\right]\left[\begin{array}{l}
\frac{1}{3} \\
\frac{1}{4}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{1}{3} & -\frac{1}{2} \\
-\frac{1}{2} & 1
\end{array}\right]\left[\begin{array}{l}
4 \\
3
\end{array}\right] \\
& =\frac{1}{6}\left[\begin{array}{cc}
2 & -3 \\
-3 & 6
\end{array}\right]\left[\begin{array}{l}
4 \\
3
\end{array}\right] \\
& =\frac{1}{6}\left[\begin{array}{c}
-1 \\
6
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{1}{6} \\
1
\end{array}\right]
\end{aligned}
$$

http://www.youtube.com/watch?v=lBdASZNPIv8

Solution using Gram-Schmidt: In a previous exercise, we obtained the orthonormal basis $\left\{u_{1}=1, u_{2}=\sqrt{3}(2 t-1)\right\}$ of $\operatorname{Span}\{1, t\}$. Using this, we compute the projection

$$
\begin{aligned}
\operatorname{Proj}_{\{1, t\}}\left(t^{2}\right) & =\operatorname{Proj}_{\left\{u_{1}, u_{2}\right\}}\left(t^{2}\right) \\
& =\left(t^{2}, u_{1}\right) u_{1}+\left(t^{2}, u_{2}\right) u_{2} \\
& =\left(t^{2}, 1\right) 1+\left(t^{2}, \sqrt{3}(2 t-1)\right) \sqrt{3}(2 t-1) \\
& =\frac{1}{3}+3\left(2\left(t^{2}, t\right)-\left(t^{2}, 1\right)\right)(2 t-1) \\
& =\frac{1}{3}+3\left(\frac{2}{4}-\frac{1}{3}\right)(2 t-1) \\
& =\frac{1}{3}+\frac{1}{2}(2 t-1) \\
& =-\frac{1}{6}+t .
\end{aligned}
$$

