Math 416 - Abstract Linear Algebra
 Fall 2011, section E1
 Preview of Gauss-Jordan elimination (§ 2.2)

Consider the linear system

$$
\begin{cases}x_{1}-x_{2} & =3 \\ 4 x_{1}+3 x_{2} & =5\end{cases}
$$

whose augmented matrix is

$$
\left[\begin{array}{cc|c}
1 & -1 & 3 \\
4 & 3 & 5
\end{array}\right]
$$

We solve the system using Gauss-Jordan elimination:

$$
\begin{aligned}
{\left[\begin{array}{cc|c}
1 & -1 & 3 \\
4 & 3 & 5
\end{array}\right] } & \stackrel{R_{2}-4 R_{1}}{\sim}\left[\begin{array}{cc|c}
1 & -1 & 3 \\
0 & 7 & -7
\end{array}\right] \\
& \stackrel{\frac{1}{7} R_{2}}{\sim}\left[\begin{array}{cc|c}
1 & -1 & 3 \\
0 & 1 & -1
\end{array}\right] \\
& \stackrel{R_{1}+R_{2}}{\sim}\left[\begin{array}{cc|c}
1 & 0 & 2 \\
0 & 1 & -1
\end{array}\right] .
\end{aligned}
$$

The unique solution is $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}2 \\ -1\end{array}\right]$.

Remark 1: The reduced row echelon form of the augmented matrix (last step) is saying

$$
\begin{aligned}
& x_{1}=2 \\
& x_{2}=-1
\end{aligned}
$$

whence the conclusion.

Remark 2: Let us check that $\left[\begin{array}{c}2 \\ -1\end{array}\right]$ is indeed a solution, in all three points of view on linear systems. As a system of linear equations:

$$
\begin{cases}(2)-(-1) & =3 \\ 4(2)+3(-1) & =5\end{cases}
$$

As a matrix-vector equation:

$$
\left[\begin{array}{cc}
1 & -1 \\
4 & 3
\end{array}\right]\left[\begin{array}{c}
2 \\
-1
\end{array}\right]=\left[\begin{array}{l}
3 \\
5
\end{array}\right] .
$$

As a vector equation:

$$
2\left[\begin{array}{l}
1 \\
4
\end{array}\right]-1\left[\begin{array}{c}
-1 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
8
\end{array}\right]+\left[\begin{array}{c}
1 \\
-3
\end{array}\right]=\left[\begin{array}{l}
3 \\
5
\end{array}\right] .
$$

