Math 416 - Abstract Linear Algebra
 Fall 2011, section E1
 Practice Final

Name:

- This is a (long) practice exam. The real exam will consist of 6 problems.
- In the real exam, no calculators, electronic devices, books, or notes may be used.
- Show your work. No credit for answers without justification.
- Good luck!

1. \qquad / 10
2. \qquad $/ 15$
3. \qquad /15
4. \qquad /10
5. \qquad /10
6. \qquad /10
7. \qquad /10
8. \qquad /10
9. \qquad /10
10. \qquad /15
11. \qquad /10
12. \qquad /10

Total: \qquad /135

Problem 1. ($\mathbf{1 0} \mathbf{~ p t s) ~ L e t ~} V, W$ be finite-dimensional vector spaces. Show that V is isomorphic to W if and only if V and W have the same dimension.

Problem 2a. ($\mathbf{6} \mathbf{p t s}$) Show that vectors $v_{1}, \ldots, v_{n} \in V$ are linearly independent if and only if there is a linear map $T: V \rightarrow W$ such that $T v_{1}, \ldots, T v_{n}$ are linearly independent. [The content is in the "if" direction.]
b. (4 pts) Let $X:=(a, b) \subseteq \mathbb{R}$ be an open interval of the real line, and consider the vector space of smooth functions on X

$$
C^{\infty}(X):=\left\{f: X \rightarrow \mathbb{R} \mid \text { derivatives } f^{(n)} \text { exist for all } n \geq 1\right\}
$$

Let $x \in X$ be some point in the interval X. Check that

$$
\begin{aligned}
& T_{x}: C^{\infty}(X) \rightarrow \mathbb{R}^{2} \\
& f \mapsto\left[\begin{array}{c}
f(x) \\
f^{\prime}(x)
\end{array}\right]
\end{aligned}
$$

is a linear map.
c. (5 pts) Using parts (a) and (b), prove the following trick used in differential equations. Let $f, g: X \rightarrow \mathbb{R}$ be smooth functions. If there is a point $x \in X$ such that the determinant (called the "Wronskian")

$$
\left|\begin{array}{ll}
f(x) & g(x) \\
f^{\prime}(x) & g^{\prime}(x)
\end{array}\right|
$$

is non-zero, then the functions $f, g \in C^{\infty}(X)$ are linearly independent.

Problem 3. Let $\mathcal{A}:=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V and $\varphi_{\mathcal{A}}: V \xrightarrow{\simeq} \mathbb{R}^{n}$ the isomorphism giving the coordinates with respect to \mathcal{A}, i.e. $\varphi_{\mathcal{A}}(v):=[v]_{\mathcal{A}}$.
Let $\mathcal{B}:=\left\{w_{1}, \ldots, w_{m}\right\}$ be a basis of W. Let $T: V \rightarrow W$ be a linear map and let $[T]_{\mathcal{B A}}$ be the $m \times n$ matrix representing T with respect to the bases \mathcal{A} and \mathcal{B}, as in the diagram

$$
\begin{aligned}
V & \xrightarrow{T} W \\
\varphi_{\mathcal{A}} \mid & \simeq \\
\downarrow & \simeq \downarrow_{\mathcal{B}} \\
\mathbb{R}^{n} \xrightarrow[{[T]_{\mathcal{B A}}}]{ } & \mathbb{R}^{m} .
\end{aligned}
$$

a. (5 pts) Show $\varphi_{\mathcal{A}}(\operatorname{ker} T)=\operatorname{Null}[T]_{\mathcal{B A}}$. In words: "the null space is the expression of the kernel in coordinates".
b. (5 pts) In the same setup, show $\varphi_{\mathcal{B}}(\operatorname{im} T)=\operatorname{Col}[T]_{\mathcal{B A}}$. In words: "the column space is the expression of the image in coordinates".
c. (5 pts) Let $T: V \rightarrow W$ be a linear map, $\left\{v_{1}, v_{2}, v_{3}\right\}$ a basis of V, and $\left\{w_{1}, w_{2}\right\}$ a basis of W such that the matrix representing T with respect to those bases is

$$
[T]_{\left\{w_{i}\right\}\left\{v_{i}\right\}}=\left[\begin{array}{ccc}
3 & 9 & -6 \\
1 & 3 & -2
\end{array}\right] .
$$

Find a basis of $\operatorname{ker} T \subset V$ and a basis of $\operatorname{im} T \subset W$.

Problem 4. (10 pts) Consider the "Fibonacci-like" sequence given by

$$
\begin{aligned}
& c_{0}=0 \\
& c_{1}=1 \\
& c_{n}=c_{n-1}+2 c_{n-2} \text { for } n \geq 2 .
\end{aligned}
$$

For example, the first few numbers c_{n} are $0,1,1,3,5,11,21,43, \ldots$
Find c_{500}.

Problem 5. (10 pts) Let A be an operator with distinct eigenvalues (i.e. all eigenvalues have algebraic multiplicity 1), and B an operator that commutes with A. Show that B is diagonalizable, moreover with the same eigenvectors as A.

Problem 6. ($\mathbf{1 0} \mathbf{~ p t s)}$ Let V, W be n-dimensional complex inner product spaces. Show that V and W are isometrically isomorphic.

Problem 7. (10 pts) Let V be a finite-dimensional complex vector space and $\left\{v_{1}, \ldots, v_{n}\right\}$ a basis of V. For any vectors $v, w \in V$, express them in the given basis

$$
v=\sum_{i} \alpha_{i} v_{i}, w=\sum_{i} \beta_{i} v_{i}
$$

and define

$$
(v, w):=\sum_{i} \alpha_{i} \overline{\beta_{i}} \in \mathbb{C}
$$

Show that this formula (v, w) defines a complex inner product on V.

Problem 8. (10 pts) Consider the plane P in \mathbb{R}^{3} given by the equation

$$
2 x_{1}-4 x_{2}+x_{3}=1 .
$$

Note that the plane does not go through the origin.
Find the distance from the point $\left[\begin{array}{l}2 \\ 1 \\ 6\end{array}\right]$ to the plane.

Problem 9. (10 pts) Consider the real inner product space

$$
C[-1,1]:=\{f:[-1,1] \rightarrow \mathbb{R} \mid f \text { is continuous }\}
$$

with its usual inner product

$$
(f, g)=\int_{-1}^{1} f(t) g(t) \mathrm{dt}
$$

Consider the absolute value function $f(t)=|t|$. Find $\operatorname{Proj}_{\left\{1, t, t^{2}\right\}}(f)$.

Problem 10. Let V be a finite-dimensional complex inner product space.
a. (5 pts) Show that a normal operator $A: V \rightarrow V$ with real eigenvalues is self-adjoint.
b. (10 pts) Using part (a), show that any normal operator $N: V \rightarrow V$ is the product of a unitary operator and a self-adjoint operator that commute with each other. Hint: A normal operator whose eigenvalues have modulus 1 is unitary.

Problem 11. Consider the set of all invertible $n \times n$ (real) matrices

$$
G L(n):=\left\{A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \mid A \text { is linear and invertible }\right\} .
$$

Consider the function sign: $G L(n) \rightarrow\{1,-1\}$ defined by

$$
\operatorname{sign}(A)= \begin{cases}1 & \text { if } A \text { is orientation-preserving } \\ -1 & \text { if } A \text { is orientation-reversing }\end{cases}
$$

a. (4 pts) Show that sign is compatible with products:

$$
\operatorname{sign}(A B)=\operatorname{sign}(A) \operatorname{sign}(B)
$$

b. (6 pts) Show that a permutation matrix P_{σ} is orientation-preserving if and only if σ is even. In other words, show the equality $\operatorname{sign}\left(P_{\sigma}\right)=\operatorname{sign}(\sigma)$.

Problem 12. Consider the quadratic form on \mathbb{R}^{2} given by

$$
Q(x)=4 x_{1} x_{2}+3 x_{2}^{2} .
$$

a. (2 pts) Find the unique symmetric matrix A satisfying $Q(x)=(A x, x)$.
b. (8 pts) Orthogonally diagonalize A. In other words, find a factorization $A=U D U^{T}$, where U is orthogonal and D is diagonal.

