Math 416 - Abstract Linear Algebra Fall 2011, section E1 Practice Final

Name:

- This is a (long) practice exam. The real exam will consist of 6 problems.
- In the real exam, no calculators, electronic devices, books, or notes may be used.
- Show your work. No credit for answers without justification.
- Good luck!
- 1.
 /10

 2.
 /15

 3.
 /15

 4.
 /10

 5.
 /10

 6.
 /10

 7.
 /10

 8.
 /10

 9.
 /10

 10.
 /15

 11.
 /10

 12.
 /10

 Total:
 /135

Problem 1. (10 pts) Let V, W be finite-dimensional vector spaces. Show that V is isomorphic to W if and only if V and W have the same dimension.

Problem 2a. (6 pts) Show that vectors $v_1, \ldots, v_n \in V$ are linearly independent if and only if there is a linear map $T: V \to W$ such that Tv_1, \ldots, Tv_n are linearly independent. [The content is in the "if" direction.]

b. (4 pts) Let $X := (a, b) \subseteq \mathbb{R}$ be an open interval of the real line, and consider the vector space of smooth functions on X

 $C^{\infty}(X) := \{ f \colon X \to \mathbb{R} \mid \text{ derivatives } f^{(n)} \text{ exist for all } n \ge 1 \}.$

Let $x \in X$ be some point in the interval X. Check that

$$T_x \colon C^{\infty}(X) \to \mathbb{R}^2$$

 $f \mapsto \begin{bmatrix} f(x) \\ f'(x) \end{bmatrix}$

is a linear map.

c. (5 pts) Using parts (a) and (b), prove the following trick used in differential equations. Let $f, g: X \to \mathbb{R}$ be smooth functions. If there is a point $x \in X$ such that the determinant (called the "Wronskian")

$$\begin{vmatrix} f(x) & g(x) \\ f'(x) & g'(x) \end{vmatrix}$$

is non-zero, then the functions $f, g \in C^{\infty}(X)$ are linearly independent.

Problem 3. Let $\mathcal{A} := \{v_1, \ldots, v_n\}$ be a basis of V and $\varphi_{\mathcal{A}} \colon V \xrightarrow{\simeq} \mathbb{R}^n$ the isomorphism giving the coordinates with respect to \mathcal{A} , i.e. $\varphi_{\mathcal{A}}(v) := [v]_{\mathcal{A}}$.

Let $\mathcal{B} := \{w_1, \ldots, w_m\}$ be a basis of W. Let $T: V \to W$ be a linear map and let $[T]_{\mathcal{B}\mathcal{A}}$ be the $m \times n$ matrix representing T with respect to the bases \mathcal{A} and \mathcal{B} , as in the diagram

$$V \xrightarrow{T} W$$

$$\varphi_{\mathcal{A}} \downarrow \simeq \qquad \simeq \downarrow \varphi_{\mathcal{B}}$$

$$\mathbb{R}^{n} \xrightarrow{[T]_{\mathcal{B}\mathcal{A}}} \mathbb{R}^{m}.$$

a. (5 pts) Show $\varphi_{\mathcal{A}}(\ker T) = \operatorname{Null}[T]_{\mathcal{BA}}$. In words: "the null space is the expression of the kernel in coordinates".

b. (5 pts) In the same setup, show $\varphi_{\mathcal{B}}(\operatorname{im} T) = \operatorname{Col}[T]_{\mathcal{BA}}$. In words: "the column space is the expression of the image in coordinates".

c. (5 pts) Let $T: V \to W$ be a linear map, $\{v_1, v_2, v_3\}$ a basis of V, and $\{w_1, w_2\}$ a basis of W such that the matrix representing T with respect to those bases is

$$[T]_{\{w_i\}\{v_i\}} = \begin{bmatrix} 3 & 9 & -6\\ 1 & 3 & -2 \end{bmatrix}.$$

Find a basis of ker $T \subset V$ and a basis of im $T \subset W$.

Problem 4. (10 pts) Consider the "Fibonacci-like" sequence given by

$$c_0 = 0$$

 $c_1 = 1$
 $c_n = c_{n-1} + 2c_{n-2}$ for $n \ge 2$.

For example, the first few numbers c_n are $0, 1, 1, 3, 5, 11, 21, 43, \ldots$ Find c_{500} . **Problem 5.** (10 pts) Let A be an operator with **distinct** eigenvalues (i.e. all eigenvalues have algebraic multiplicity 1), and B an operator that commutes with A. Show that B is diagonalizable, moreover with the same eigenvectors as A.

Problem 6. (10 pts) Let V, W be *n*-dimensional complex inner product spaces. Show that V and W are isometrically isomorphic.

Problem 7. (10 pts) Let V be a finite-dimensional complex vector space and $\{v_1, \ldots, v_n\}$ a basis of V. For any vectors $v, w \in V$, express them in the given basis

$$v = \sum_{i} \alpha_{i} v_{i}, \ w = \sum_{i} \beta_{i} v_{i}$$

and define

$$(v,w) := \sum_{i} \alpha_i \overline{\beta_i} \in \mathbb{C}.$$

Show that this formula (v, w) defines a complex inner product on V.

Problem 8. (10 pts) Consider the plane P in \mathbb{R}^3 given by the equation

$$2x_1 - 4x_2 + x_3 = 1.$$

Note that the plane does **not** go through the origin.

Find the distance from the point $\begin{bmatrix} 2\\1\\6 \end{bmatrix}$ to the plane.

Problem 9. (10 pts) Consider the real inner product space

$$C[-1,1] := \{ f \colon [-1,1] \to \mathbb{R} \mid f \text{ is continuous } \}$$

with its usual inner product

$$(f,g) = \int_{-1}^{1} f(t)g(t) \,\mathrm{dt}.$$

Consider the absolute value function f(t) = |t|. Find $\operatorname{Proj}_{\{1,t,t^2\}}(f)$.

Problem 10. Let V be a finite-dimensional complex inner product space.

a. (5 pts) Show that a normal operator $A: V \to V$ with real eigenvalues is self-adjoint.

b. (10 pts) Using part (a), show that any normal operator $N: V \to V$ is the product of a unitary operator and a self-adjoint operator that commute with each other. Hint: A normal operator whose eigenvalues have modulus 1 is unitary.

Problem 11. Consider the set of all invertible $n \times n$ (real) matrices

 $GL(n) := \{A \colon \mathbb{R}^n \to \mathbb{R}^n \mid A \text{ is linear and invertible } \}.$

Consider the function sign: $GL(n) \rightarrow \{1, -1\}$ defined by

 $\operatorname{sign}(A) = \begin{cases} 1 & \text{if } A \text{ is orientation-preserving} \\ -1 & \text{if } A \text{ is orientation-reversing.} \end{cases}$

a. (4 pts) Show that sign is compatible with products:

$$\operatorname{sign}(AB) = \operatorname{sign}(A)\operatorname{sign}(B).$$

b. (6 pts) Show that a permutation matrix P_{σ} is orientation-preserving if and only if σ is even. In other words, show the equality $\operatorname{sign}(P_{\sigma}) = \operatorname{sign}(\sigma)$.

Problem 12. Consider the quadratic form on \mathbb{R}^2 given by

$$Q(x) = 4x_1x_2 + 3x_2^2.$$

a. (2 pts) Find the unique symmetric matrix A satisfying Q(x) = (Ax, x).

b. (8 pts) Orthogonally diagonalize A. In other words, find a factorization $A = UDU^T$, where U is orthogonal and D is diagonal.