Math 416 - Abstract Linear Algebra
 Fall 2011, section E1
 Working in coordinates

In these notes, we explain the idea of working "in coordinates" or coordinate-free, and how the two are related.

1 Expressing vectors in coordinates

Let V be an n-dimensional vector space. Recall that a choice of basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V is the same data as an isomorphism $\varphi: V \simeq \mathbb{R}^{n}$, which sends the basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V to the standard basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of \mathbb{R}^{n}. In other words, we have

$$
\begin{aligned}
\varphi: V & \simeq \\
v_{i} & \mapsto \mathbb{R}_{i} \\
v=c_{1} v_{1}+\ldots+c_{n} v_{n} & \mapsto\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right] .
\end{aligned}
$$

This allows us to manipulate abstract vectors $v=c_{1} v_{1}+\ldots+c_{n} v_{n}$ simply as lists of numbers, the coordinate vectors $\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right] \in \mathbb{R}^{n}$ with respect to the basis $\left\{v_{1}, \ldots, v_{n}\right\}$. Note that the coordinates of $v \in V$ depend on the choice of basis.

Notation: Write $[v]_{\left\{v_{i}\right\}}:=\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right] \in \mathbb{R}^{n}$ for the coordinates of $v \in V$ with respect to the basis $\left\{v_{1}, \ldots, v_{n}\right\}$. For shorthand notation, let us name the basis $\mathcal{A}:=\left\{v_{1}, \ldots, v_{n}\right\}$ and then write $[v]_{\mathcal{A}}$ for the coordinates of v with respect to the basis \mathcal{A}.

Example: Using the monomial basis $\left\{1, x, x^{2}\right\}$ of $P_{2}=\left\{a_{0}+a_{1} x+a_{2} x^{2} \mid a_{i} \in \mathbb{R}\right\}$, we obtain an isomorphism

$$
\begin{gathered}
\varphi: P_{2} \stackrel{\simeq}{\leftrightharpoons} \mathbb{R}^{3} \\
a_{0}+a_{1} x+a_{2} x^{2} \mapsto\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right] .
\end{gathered}
$$

In the notation above, we have $\left[a_{0}+a_{1} x+a_{2} x^{2}\right]_{\left\{x^{i}\right\}}=\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2}\end{array}\right]$.

Example: Let us use a different basis of P_{2}, the basis "expanded around 5" $\left\{1, x-5,(x-5)^{2}\right\}$. Then we have

$$
\begin{aligned}
1 & =1 \\
x & =(x-5)+5 \\
& =5(1)+1(x-5) \\
x^{2} & =(x-5)^{2}+10 x-25 \\
& =(x-5)^{2}+10(x-5)+25 \\
& =25(1)+10(x-5)+1(x-5)^{2}
\end{aligned}
$$

so that in the notation above, the coordinates of the standard monomials are

$$
\begin{aligned}
& {[1]_{\left\{(x-5)^{i}\right\}} }=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
& {[x]_{\left\{(x-5)^{i}\right\}} }=\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right] \\
& {\left[x^{2}\right]_{\left\{(x-5)^{i}\right\}}=\left[\begin{array}{c}
25 \\
10 \\
1
\end{array}\right] . }
\end{aligned}
$$

2 Expressing transformations in coordinates

If vector spaces can be expressed in coordinates, then linear transformations between them can also be expressed in coordinates.

Theorem: Let V be an n-dimensional vector space, W an m-dimensional vector space, and $T: V \rightarrow W$ a linear transformation. Let $\mathcal{A}=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V and $\mathcal{B}=\left\{w_{1}, \ldots, w_{m}\right\}$ a basis of W. Then there is a unique $m \times n$ matrix A satisfying

$$
[T v]_{\mathcal{B}}=A[v]_{\mathcal{A}}
$$

for all $v \in V$, given by the formula

$$
A=\left[\begin{array}{llll}
{\left[T v_{1}\right]_{\mathcal{B}}} & {\left[T v_{2}\right]_{\mathcal{B}}} & \cdots & {\left[T v_{n}\right]_{\mathcal{B}}}
\end{array}\right] .
$$

We denote this matrix $[T]_{\mathcal{B A}}$ and call it the matrix representing T with respect to the bases \mathcal{A} and \mathcal{B}.

Slick proof: The choice of bases \mathcal{A} and \mathcal{B} defines isomorphisms $\varphi: V \simeq \mathbb{R}^{n}$ and $\psi: W \simeq \mathbb{R}^{m}$. There is a unique linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ making the diagram

$$
\begin{gathered}
V \xrightarrow{T} W \\
\varphi \downarrow \simeq \\
\simeq \downarrow \psi \\
\mathbb{R}^{n} \xrightarrow[A]{\longrightarrow} \mathbb{R}^{m}
\end{gathered}
$$

commute, namely the transformation $A=\psi T \varphi^{-1}$. By $\S 1.3 .2, A$ corresponds to the $m \times n$ matrix A whose $i^{\text {th }}$ column is $\psi T \varphi^{-1}\left(e_{i}\right)=\psi T v_{i}=\left[T v_{i}\right]_{\mathcal{B}}$.

Direct proof: Since T is linear, it is determined by its values $T v_{1}, T v_{2}, \ldots, T v_{n}$ on a basis. More precisely, for $v=c_{1} v_{1}+\ldots+c_{n} v_{n}$, we have

$$
T v=T\left(c_{1} v_{1}+\ldots+c_{n} v_{n}\right)=c_{1} T v_{1}+\ldots+c_{n} T v_{n} .
$$

Taking coordinates with respect to the basis \mathcal{B} of W, we obtain

$$
\begin{aligned}
{[T v]_{\mathcal{B}} } & =c_{1}\left[T v_{1}\right]_{\mathcal{B}}+\ldots+c_{n}\left[T v_{n}\right]_{\mathcal{B}} \\
& =\left[\begin{array}{llll}
{\left[T v_{1}\right]_{\mathcal{B}}} & {\left[T v_{2}\right]_{\mathcal{B}}} & \ldots & {\left[T v_{n}\right]_{\mathcal{B}}}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right] \\
& =\left[\begin{array}{llll}
{\left[T v_{1}\right]_{\mathcal{B}}} & {\left[T v_{2}\right]_{\mathcal{B}}} & \ldots & \left.\left[T v_{n}\right]_{\mathcal{B}}\right][v]_{\mathcal{A}} .
\end{array}\right.
\end{aligned}
$$

Example: Consider the differentiation operator $D: P_{2} \rightarrow P_{1}$ which sends $p(x)$ to $p^{\prime}(x)$. Let us find the matrix representing D with respect to the monomial bases $\left\{1, x, x^{2}\right\}$ of P_{2} and $\{1, x\}$ of P_{1}. We have

$$
\begin{aligned}
D(1) & =0 \\
D(x) & =1 \\
D\left(x^{2}\right) & =2 x
\end{aligned}
$$

which have coordinate vectors

$$
\begin{aligned}
{[D(1)]_{\{1, x\}} } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{[D(x)]_{\{1, x\}} } & =\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
{\left[D\left(x^{2}\right)\right]_{\{1, x\}} } & =\left[\begin{array}{l}
0 \\
2
\end{array}\right]
\end{aligned}
$$

so that D is represented by the matrix

$$
[D]_{\{1, x\}\left\{1, x, x^{2}\right\}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right] .
$$

Now keep the monomial basis $\left\{1, x, x^{2}\right\}$ in the source P_{2} and take the basis expanded around $5\{1, x-5\}$ in the target P_{1}. Then we have

$$
\begin{aligned}
D(1) & =0 \\
D(x) & =1 \\
D\left(x^{2}\right) & =2 x=2(x-5)+10=10+2(x-5)
\end{aligned}
$$

which have coordinate vectors

$$
\begin{aligned}
{[D(1)]_{\{1, x-5\}} } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{[D(x)]_{\{1, x-5\}} } & =\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
{\left[D\left(x^{2}\right)\right]_{\{1, x-5\}} } & =\left[\begin{array}{c}
10 \\
2
\end{array}\right]
\end{aligned}
$$

so that D is represented by the matrix

$$
[D]_{\{1, x-5\}\left\{1, x, x^{2}\right\}}=\left[\begin{array}{ccc}
0 & 1 & 10 \\
0 & 0 & 2
\end{array}\right]
$$

Now take the basis expanded around $5\left\{1, x-5,(x-5)^{2}\right\}$ in the source P_{2} and keep the monomial basis $\{1, x\}$ in the target P_{1}. Then we have

$$
\begin{aligned}
D(1) & =0 \\
D(x-5) & =1 \\
D(x-5)^{2} & =2(x-5)=-10+2 x
\end{aligned}
$$

which have coordinate vectors

$$
\begin{aligned}
{[D(1)]_{\{1, x\}} } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{[D(x-5)]_{\{1, x\}} } & =\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
{\left[D(x-5)^{2}\right]_{\{1, x\}} } & =\left[\begin{array}{c}
-10 \\
2
\end{array}\right]
\end{aligned}
$$

so that D is represented by the matrix

$$
[D]_{\{1, x\}\left\{1, x-5,(x-5)^{2}\right\}}=\left[\begin{array}{ccc}
0 & 1 & -10 \\
0 & 0 & 2
\end{array}\right]
$$

Finally, take the bases expanded around $5\left\{1, x-5,(x-5)^{2}\right\}$ in the source P_{2} and $\{1, x-5\}$ in the target P_{1}. Then we have

$$
\begin{aligned}
D(1) & =0 \\
D(x-5) & =1 \\
D(x-5)^{2} & =2(x-5)
\end{aligned}
$$

which have coordinate vectors

$$
\begin{aligned}
{[D(1)]_{\{1, x-5\}} } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{[D(x-5)]_{\{1, x-5\}} } & =\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
{\left[D(x-5)^{2}\right]_{\{1, x-5\}} } & =\left[\begin{array}{l}
0 \\
2
\end{array}\right]
\end{aligned}
$$

so that D is represented by the matrix

$$
[D]_{\{1, x-5\}\left\{1, x-5,(x-5)^{2}\right\}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right] .
$$

3 Switching between the two

The discussion above has two important consequences - as long as we don't mind going back and forth between coordinate world and coordinate-free world.

Upshot 1: The study of finite-dimensional vector spaces reduces to the study of spaces of the form \mathbb{R}^{n}, where we can compute everything explicitly.

Upshot 2: Every statement in coordinates has a coordinate-free analogue.
Let us illustrate this principle with the following example.

Theorem: Rank-nullity theorem, in coordinates. Let A be an $m \times n$ matrix. Then we have

$$
\operatorname{dim} \operatorname{Null} A+\operatorname{rank} A=\operatorname{dim} \operatorname{Null} A+\operatorname{dim} \operatorname{Col} A=n .
$$

Theorem: Rank-nullity theorem, coordinate-free. Let V be an n-dimensional vector space, W an m-dimensional vector space, and $T: V \rightarrow W$ a linear transformation. Then we have

$$
\operatorname{dim} \operatorname{ker} T+\operatorname{rank} T=\operatorname{dim} \operatorname{ker} T+\operatorname{dim} \operatorname{im} T=\operatorname{dim} V=n .
$$

Proof: Pick isomorphisms $\varphi: V \simeq \mathbb{R}^{n}$ and $\psi: W \simeq \mathbb{R}^{m}$, and let A be the matrix representing T in coordinates:

$$
\begin{gathered}
V \xrightarrow{T} W \\
\varphi \mid \simeq \\
\simeq \downarrow \psi \\
\mathbb{R}^{n} \xrightarrow[A]{\longrightarrow} \mathbb{R}^{m} .
\end{gathered}
$$

We have $\operatorname{ker} T=\varphi^{-1}$ Null A which implies

$$
\operatorname{dim} \operatorname{ker} T=\operatorname{dim}\left(\varphi^{-1} \operatorname{Null} A\right)=\operatorname{dim} \operatorname{Null} A
$$

and also $\operatorname{im} T=\psi^{-1} \mathrm{Col} A$ which implies

$$
\operatorname{dimim} T=\operatorname{dim}\left(\psi^{-1} \operatorname{Col} A\right)=\operatorname{dim} \operatorname{Col} A
$$

Using the rank-nullity theorem in coordinates, we obtain $\operatorname{dim} \operatorname{ker} T+\operatorname{dim} \operatorname{im} T=\operatorname{dim} \operatorname{Null} A+\operatorname{dim} \operatorname{Col} A=n$.

