Math 416 - Abstract Linear Algebra Fall 2011, section E1 Column space and null space

The following example illustrates the notion of dimension and "culling down" a linearly dependent collection of vectors.

Let

$$A = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 1 \\ 3 & 6 & 1 \\ 1 & 2 & 1 \end{bmatrix}.$$

Find the dimension of $\operatorname{Col} A$ and $\operatorname{Null} A$, as well as a basis for each.

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 1 \\ 3 & 6 & 1 \\ 1 & 2 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Since the pivots are in columns 1 and 3, we conclude dim Col A = 2 and a basis of Col A is given by $\{a_1, a_3\} = \{ \begin{bmatrix} 1\\2\\3\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} \}.$

Remark 1: We have culled down the linearly dependent collection $\{a_1, a_2, a_3\}$ to a basis of Span $\{a_1, a_2, a_3\} = \text{Col } A$. In other words, since a_2 is already in Span $\{a_1, a_3\}$, we have Span $\{a_1, a_2, a_3\} = \text{Span}\{a_1, a_3\}$ and a_2 can be discarded.

Remark 2: Why does this algorithm work? Every column which does **not** have a pivot can be expressed as a linear combination of the pivot columns.

In our example, we have $\operatorname{col} 2 = 2 \operatorname{col} 1$, that is:

$$\begin{bmatrix} 2\\0\\0\\0 \end{bmatrix} = 2 \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}.$$

Since row operations **preserve** linear dependence relations among columns, the same relation holds among the columns of the original matrix A. In other words, we have $a_2 = 2a_1$, that is:

$$\begin{bmatrix} 2\\4\\6\\2 \end{bmatrix} = 2 \begin{bmatrix} 1\\2\\3\\1 \end{bmatrix}.$$

For the null space, we are solving the system Ax = 0. Explicitly, row reduction gives

$$\begin{bmatrix} A \mid \mathbf{0} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \mid 0 \\ 2 & 4 & 1 \mid 0 \\ 3 & 6 & 1 \mid 0 \\ 1 & 2 & 1 \mid 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 \mid 0 \\ 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{bmatrix}.$$

Note that x_2 is the only free variable. The lead variables x_1, x_3 are determined by x_2 via the equations

$$x_1 + 2x_2 = 0$$
$$x_3 = 0$$

Therefore the solution set is

Null
$$A = \left\{ \begin{bmatrix} -2x_2\\ x_2\\ 0 \end{bmatrix} \mid x_2 \in \mathbb{R} \right\}$$
$$= \left\{ x_2 \begin{bmatrix} -2\\ 1\\ 0 \end{bmatrix} \mid x_2 \in \mathbb{R} \right\}$$
$$= \operatorname{Span} \left\{ \begin{bmatrix} -2\\ 1\\ 0 \end{bmatrix} \right\}.$$

In fact, $\left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix} \right\}$ is a basis of Null A and we conclude dim Null A = 1.

Remark 3: The fact that $\begin{bmatrix} -2\\1\\0 \end{bmatrix}$ is in Null *A* is saying $-2a_1 + a_2 = \mathbf{0}$. In other words, it expresses the dependence relation $a_2 = 2a_1$ among the columns of *A*.

Remark 4: The algorithm to find a basis of Null A is to in turn set one of the free variables equal to 1 and the other free variables equal to 0, yielding what are sometimes called "special solutions" of the system Ax = 0. For example, consider

$$A = \begin{bmatrix} 1 & 5 & 7 \\ 2 & 10 & 14 \end{bmatrix} \sim \begin{bmatrix} 1 & 5 & 7 \\ 0 & 0 & 0 \end{bmatrix}.$$

The free variables are x_2, x_3 and the lead variable x_1 is determined via $x_1 + 5x_2 + 7x_3 = 0$. The solution set is

Null
$$A = \left\{ \begin{bmatrix} -5x_2 - 7x_3 \\ x_2 \\ x_3 \end{bmatrix} \mid x_2, x_3 \in \mathbb{R} \right\}$$

$$= \left\{ x_2 \begin{bmatrix} -5 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -7 \\ 0 \\ 1 \end{bmatrix} \mid x_2, x_3 \in \mathbb{R} \right\}$$
$$= \operatorname{Span} \left\{ \begin{bmatrix} -5 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -7 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

Setting $x_2 = 1, x_3 = 0$ yields the special solution $\begin{bmatrix} -5\\1\\0 \end{bmatrix}$ whereas setting $x_2 = 0, x_3 = 1$ yields the special solution $\begin{bmatrix} -7\\0\\1 \end{bmatrix}$. Together they form a basis of Null A.

Remark 5: The discussion above implies

 $\dim \operatorname{Col} A = \text{ number of columns with a pivot}$ $\dim \operatorname{Null} A = \text{ number of columns without a pivot.}$

In particular, we have

 $\dim \operatorname{Col} A + \dim \operatorname{Null} A = \operatorname{number} \operatorname{of} \operatorname{columns} = n.$