Math 416 - Abstract Linear Algebra
 Fall 2011, section E1
 Column space and null space

The following example illustrates the notion of dimension and "culling down" a linearly dependent collection of vectors.

Let

$$
A=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 1 \\
3 & 6 & 1 \\
1 & 2 & 1
\end{array}\right]
$$

Find the dimension of $\operatorname{Col} A$ and $\operatorname{Null} A$, as well as a basis for each.

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 1 \\
3 & 6 & 1 \\
1 & 2 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 0 & -1 \\
0 & 0 & -2 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Since the pivots are in columns 1 and 3 , we conclude $\operatorname{dim} \operatorname{Col} A=2$ and a basis of $\operatorname{Col} A$ is given by $\left\{a_{1}, a_{3}\right\}=\left\{\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$.

Remark 1: We have culled down the linearly dependent collection $\left\{a_{1}, a_{2}, a_{3}\right\}$ to a basis of $\operatorname{Span}\left\{a_{1}, a_{2}, a_{3}\right\}=\operatorname{Col} A$. In other words, since a_{2} is already in $\operatorname{Span}\left\{a_{1}, a_{3}\right\}$, we have $\operatorname{Span}\left\{a_{1}, a_{2}, a_{3}\right\}=\operatorname{Span}\left\{a_{1}, a_{3}\right\}$ and a_{2} can be discarded.

Remark 2: Why does this algorithm work? Every column which does not have a pivot can be expressed as a linear combination of the pivot columns.

In our example, we have col $2=2$ col 1 , that is:

$$
\left[\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right]=2\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

Since row operations preserve linear dependence relations among columns, the same relation holds among the columns of the original matrix A. In other words, we have $a_{2}=2 a_{1}$, that is:

$$
\left[\begin{array}{l}
2 \\
4 \\
6 \\
2
\end{array}\right]=2\left[\begin{array}{l}
1 \\
2 \\
3 \\
1
\end{array}\right] .
$$

For the null space, we are solving the system $A x=\mathbf{0}$. Explicitly, row reduction gives

$$
[A \mid \mathbf{0}]=\left[\begin{array}{lll|l}
1 & 2 & 1 & 0 \\
2 & 4 & 1 & 0 \\
3 & 6 & 1 & 0 \\
1 & 2 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{lll|l}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Note that x_{2} is the only free variable. The lead variables x_{1}, x_{3} are determined by x_{2} via the equations

$$
\begin{aligned}
x_{1}+2 x_{2} & =0 \\
x_{3} & =0 .
\end{aligned}
$$

Therefore the solution set is

$$
\begin{aligned}
\text { Null } A & =\left\{\left.\left[\begin{array}{c}
-2 x_{2} \\
x_{2} \\
0
\end{array}\right] \right\rvert\, x_{2} \in \mathbb{R}\right\} \\
& =\left\{\left.x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right] \right\rvert\, x_{2} \in \mathbb{R}\right\} \\
& =\operatorname{Span}\left\{\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]\right\} .
\end{aligned}
$$

In fact, $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]\right\}$ is a basis of $\operatorname{Null} A$ and we conclude $\operatorname{dim} \operatorname{Null} A=1$.

Remark 3: The fact that $\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]$ is in Null A is saying $-2 a_{1}+a_{2}=\mathbf{0}$. In other words, it expresses the dependence relation $a_{2}=2 a_{1}$ among the columns of A.

Remark 4: The algorithm to find a basis of $\operatorname{Null} A$ is to in turn set one of the free variables equal to 1 and the other free variables equal to 0 , yielding what are sometimes called "special solutions" of the system $A x=\mathbf{0}$. For example, consider

$$
A=\left[\begin{array}{ccc}
1 & 5 & 7 \\
2 & 10 & 14
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 5 & 7 \\
0 & 0 & 0
\end{array}\right]
$$

The free variables are x_{2}, x_{3} and the lead variable x_{1} is determined via $x_{1}+5 x_{2}+7 x_{3}=0$. The solution set is

$$
\begin{aligned}
\text { Null } A & =\left\{\left.\left[\begin{array}{c}
-5 x_{2}-7 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, x_{2}, x_{3} \in \mathbb{R}\right\} \\
& =\left\{\left.x_{2}\left[\begin{array}{c}
-5 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-7 \\
0 \\
1
\end{array}\right] \right\rvert\, x_{2}, x_{3} \in \mathbb{R}\right\} \\
& =\operatorname{Span}\left\{\left[\begin{array}{c}
-5 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-7 \\
0 \\
1
\end{array}\right]\right\} .
\end{aligned}
$$

Setting $x_{2}=1, x_{3}=0$ yields the special solution $\left[\begin{array}{c}-5 \\ 1 \\ 0\end{array}\right]$ whereas setting $x_{2}=0, x_{3}=1$ yields the special solution $\left[\begin{array}{c}-7 \\ 0 \\ 1\end{array}\right]$. Together they form a basis of $\operatorname{Null} A$.

Remark 5: The discussion above implies

$$
\begin{aligned}
\operatorname{dim} \operatorname{Col} A & =\text { number of columns with a pivot } \\
\operatorname{dim} \operatorname{Null} A & =\text { number of columns without a pivot. }
\end{aligned}
$$

In particular, we have

$$
\operatorname{dim} \operatorname{Col} A+\operatorname{dim} \operatorname{Null} A=\text { number of columns }=n .
$$

