Math 416 - Abstract Linear Algebra
 Fall 2011, section E1
 Additional problems

Section 6.5

A6.5.1. Show that planar rotations in orthogonal planes commute with each other.
In other words, let P, P^{\prime} be planes (through the origin) in \mathbb{R}^{n} that are orthogonal to each other $\left(P \perp P^{\prime}\right)$. Let $R, R^{\prime}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be planar rotations in the planes P, P^{\prime} respectively. Show the equality $R R^{\prime}=R^{\prime} R$.

A6.5.2. Consider the vectors

$$
v=\left[\begin{array}{l}
1+i \\
1+i \\
1-i \\
1-i
\end{array}\right], w=\left[\begin{array}{c}
1+i \\
-1-i \\
1-i \\
-1+i
\end{array}\right] .
$$

Let A be the 4×4 matrix with eigenvectors v, \bar{v}, w, \bar{w} corresponding respectively to the eigenvalues $e^{i \theta_{1}}, e^{-i \theta_{1}}, e^{i \theta_{2}}, e^{-i \theta_{2}}$, for some $\theta_{1}, \theta_{2} \in \mathbb{R}$.
One can show that A is orthogonal. [Not requested on the homework, although it's a fun exercise.]
Express $A: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ as a product of two commuting planar rotations. Feel free to leave the answers as products of matrices (and possibly inverses).

