# Math 416 - Abstract Linear Algebra <br> Fall 2011, section E1 <br> Additional problems 

## Section 2.8

A8.1. Let $L$ be the line through the origin in $\mathbb{R}^{2}$ at an angle $\theta=\frac{\pi}{6}=30^{\circ}$ from the $x$-axis (figure 1). In other words: $L=\operatorname{Span}\left\{\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]\right\}=\operatorname{Span}\left\{\left[\begin{array}{c}\frac{\sqrt{3}}{2} \\ \frac{1}{2}\end{array}\right]\right\}$.


Figure 1: Reflection across a line.

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the reflection across the line $L$.
a. Let $\left\{v_{1}, v_{2}\right\}$ be the basis of $\mathbb{R}^{2}$ obtained by rotating the standard basis by an angle $\theta$, i.e.

$$
\begin{aligned}
& v_{1}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{3}}{2} \\
\frac{1}{2}
\end{array}\right] \\
& v_{2}=\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{\sqrt{3}}{2}
\end{array}\right] .
\end{aligned}
$$

Note that $v_{1}$ lies on the line $L$ and $v_{2}$ is perpendicular to it.
Find the matrix representing $T$ with respect to the basis $\left\{v_{1}, v_{2}\right\}$.
b. Find the standard matrix representation of $T$ using part (a) and the change of coordinates formula.
c. Confirm your answer in part (b) by computing $T\left(e_{1}\right), T\left(e_{2}\right)$ directly i.e. geometrically.

Remark: The matrices you obtained in parts (a) and (b) should have the same trace.

