Math 416 - Abstract Linear Algebra Fall 2011, section E1 Additional problems

Section 2.8

A8.1. Let *L* be the line through the origin in \mathbb{R}^2 at an angle $\theta = \frac{\pi}{6} = 30^\circ$ from the *x*-axis (figure 1). In other words: $L = \text{Span}\left\{\begin{bmatrix}\cos\theta\\\sin\theta\end{bmatrix}\right\} = \text{Span}\left\{\begin{bmatrix}\frac{\sqrt{3}}{2}\\\frac{1}{2}\end{bmatrix}\right\}$.

Figure 1: Reflection across a line.

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the reflection across the line L.

a. Let $\{v_1, v_2\}$ be the basis of \mathbb{R}^2 obtained by rotating the standard basis by an angle θ , i.e.

$$v_1 = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix}$$
$$v_2 = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix}$$

Note that v_1 lies on the line L and v_2 is perpendicular to it.

Find the matrix representing T with respect to the basis $\{v_1, v_2\}$.

b. Find the **standard** matrix representation of T using part (a) and the change of coordinates formula.

c. Confirm your answer in part (b) by computing $T(e_1), T(e_2)$ directly i.e. geometrically.

Remark: The matrices you obtained in parts (a) and (b) should have the same trace.