Math 416 - Abstract Linear Algebra
 Fall 2011, section E1
 Additional problems

Section 2.6

A6.1. Prove the coordinate-free version of theorem 6.1, which we state here.

Theorem (General solution of a linear equation). Let V, W be vector spaces and $T: V \rightarrow W$ a linear transformation. Let $b \in W$, and let $x_{p} \in V$ be a particular solution of the equation $T x=b$ (if there is one). Then the general solution of the equation $T x=b$ is

$$
x_{p}+\operatorname{ker} T=\left\{x_{p}+x_{h} \mid x_{h} \in \operatorname{ker} T\right\} .
$$

Note that $\operatorname{ker} T=\{x \in V \mid T x=0\}$ is the general solution of the associated homogeneous equation $T x=0$.

Remark: No need to assume that V and W are finite dimensional. This makes the theorem useful in various contexts, such as solving linear differential equations.

