Computing the $Q R$ factorization

Let A be an $m \times n$ matrix with linearly independent columns. Applying the Gram-Schmidt orthogonalization process to the columns of A produces an $m \times n$ matrix Q whose columns are orthonormal. In fact, keeping track of all column operations on A yields a factorization $A=Q R$, where R is an $n \times n$ upper triangular matrix with positive entries on the diagonal.

Example 1a: $\quad A=\left[\begin{array}{cc}-1 & 3 \\ 1 & 5\end{array}\right]$. Let us carry out the Gram-Schmidt process with the columns a_{1}, a_{2}.

$$
\begin{aligned}
v_{1} & =a_{1}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
u_{1} & =\frac{v_{1}}{\left\|v_{1}\right\|}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
v_{2} & =a_{2}-\operatorname{proj}_{u_{1}} a_{2}=a_{2}-\left\langle u_{1}, a_{2}\right\rangle u_{1} \\
& =\left[\begin{array}{l}
3 \\
5
\end{array}\right]-\left(\frac{1}{\sqrt{2}}(-3+5)\right) \frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
5
\end{array}\right]-\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
4
\end{array}\right] \\
u_{2} & =\frac{v_{2}}{\left\|v_{2}\right\|}=\frac{1}{4 \sqrt{2}}\left[\begin{array}{l}
4 \\
4
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

Therefore the matrix Q is

$$
Q=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right] .
$$

That is how the Gram-Schmidt process produces the matrix Q. Here are two methods for finding R.

Method 1. Keeping track of column operations

At each step of Gram-Schmidt, the operations on the vectors correspond to column operations on A, which correspond to multiplying by elementary matrices on the right. Let us write all those matrices.

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
-1 & 3 \\
1 & 5
\end{array}\right] \\
& A\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & 3 \\
\frac{1}{\sqrt{2}} & 5
\end{array}\right] \\
& A\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -\sqrt{2} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & 4 \\
\frac{1}{\sqrt{2}} & 4
\end{array}\right] \\
& A\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -\sqrt{2} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{4 \sqrt{2}}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]=Q .
\end{aligned}
$$

From this we obtain

$$
\begin{align*}
A & =Q\left[\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{4 \sqrt{2}}
\end{array}\right]^{-1}\left[\begin{array}{cc}
1 & -\sqrt{2} \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & 0 \\
0 & 1
\end{array}\right]^{-1} \\
& =Q\left[\begin{array}{cc}
1 & 0 \\
0 & 4 \sqrt{2}
\end{array}\right]\left[\begin{array}{cc}
1 & \sqrt{2} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & 1
\end{array}\right] \tag{1}\\
& =Q\left[\begin{array}{cc}
\sqrt{2} & \sqrt{2} \\
0 & 4 \sqrt{2}
\end{array}\right]=Q R
\end{align*}
$$

We have found

$$
R=\left[\begin{array}{cc}
\sqrt{2} & \sqrt{2} \\
0 & 4 \sqrt{2}
\end{array}\right]=\sqrt{2}\left[\begin{array}{ll}
1 & 1 \\
0 & 4
\end{array}\right]
$$

Let us check the factorization:

$$
Q R=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right] \sqrt{2}\left[\begin{array}{ll}
1 & 1 \\
0 & 4
\end{array}\right]=\left[\begin{array}{cc}
-1 & 3 \\
1 & 5
\end{array}\right]=A
$$

Note: The numbers in the product of elementary matrices in (1) "pile up" nicely in the matrix R specifically because of the order in which the column operations are performed. Those elementary matrices do not commute at all, so order is important.

Think of the matrix R as undoing all the operations in the Gram-Schmidt algorithm.

- The $(1,1)$ entry $\sqrt{2}$ is undoing $u_{1}=\frac{1}{\sqrt{2}} a_{1}$.
- The $(1,2)$ entry $\sqrt{2}$ is undoing $v_{2}=a_{2}-\sqrt{2} u_{1}$.
- The $(2,2)$ entry $4 \sqrt{2}$ is undoing $u_{2}=\frac{1}{4 \sqrt{2}} v_{2}$.

Again, order of operations is very important!
Let us rewrite the equalities using symbols, in order to obtain the general formula.

$$
\begin{align*}
& A=\left[\begin{array}{ll}
a_{1} & a_{2}
\end{array}\right]=\left[\begin{array}{ll}
v_{1} & a_{2}
\end{array}\right] \tag{2}\\
& A\left[\begin{array}{cc}
\frac{1}{\left\|v_{1}\right\|} & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
v_{1} \\
\left\|v_{1}\right\| & a_{2}
\end{array}\right]=\left[\begin{array}{ll}
u_{1} & a_{2}
\end{array}\right] \\
& A\left[\begin{array}{cc}
\frac{1}{\left\|v_{1}\right\|} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -\left\langle u_{1}, a_{2}\right\rangle \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
u_{1} & a_{2}-\left\langle u_{1}, a_{2}\right\rangle u_{1}
\end{array}\right]=\left[\begin{array}{ll}
u_{1} & v_{2}
\end{array}\right] \\
& A\left[\begin{array}{cc}
\frac{1}{\left\|v_{1}\right\|} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -\left\langle u_{1}, a_{2}\right\rangle \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{\left\|v_{2}\right\|} \|
\end{array}\right]=\left[\begin{array}{ll}
u_{1} & \frac{v_{2}}{\left\|v_{2}\right\|}
\end{array}\right]=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]=Q .
\end{align*}
$$

From this we obtain

$$
\begin{aligned}
A & =Q\left[\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{\left\|v_{2}\right\|}
\end{array}\right]^{-1}\left[\begin{array}{cc}
1 & -\left\langle u_{1}, a_{2}\right\rangle \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
\frac{1}{\left\|v_{1}\right\|} & 0 \\
0 & 1
\end{array}\right]^{-1} \\
& =Q\left[\begin{array}{cc}
1 & 0 \\
0 & \left\|v_{2}\right\|
\end{array}\right]\left[\begin{array}{cc}
1 & \left\langle u_{1}, a_{2}\right\rangle \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\left\|v_{1}\right\| & 0 \\
0 & 1
\end{array}\right] \\
& =Q\left[\begin{array}{cc}
\left\|v_{1}\right\| & \left\langle u_{1}, a_{2}\right\rangle \\
0 & \left\|v_{2}\right\|
\end{array}\right]=Q R .
\end{aligned}
$$

This formula for R generalizes to any value of n. For example, if n were $3, R$ would be given by

$$
R=\left[\begin{array}{ccc}
\left\|v_{1}\right\| & \left\langle u_{1}, a_{2}\right\rangle & \left\langle u_{1}, a_{3}\right\rangle \tag{3}\\
0 & \left\|v_{2}\right\| & \left\langle u_{2}, a_{3}\right\rangle \\
0 & 0 & \left\|v_{3}\right\|
\end{array}\right] .
$$

Knowing this, there is no need to rewrite the whole computation (2) every time. We can just build the matrix R as we go along the Gram-Schmidt process, using (3).

Method 2. $R=Q^{T} A$
The fact that Q has orthonormal columns can be restated as $Q^{T} Q=I$. In particular, Q has a left inverse, namely Q^{T}. From this we can find R :

$$
A=Q R \Rightarrow Q^{T} A=Q^{T} Q R=R .
$$

In other words, the formula $R=Q^{T} A$ holds, no matter what m and n are. It doesn't matter if the matrix is square or not.

Example: In example 1a, we had $A=\left[\begin{array}{cc}-1 & 3 \\ 1 & 5\end{array}\right]$ and $Q=\frac{1}{\sqrt{2}}\left[\begin{array}{cl}-1 & 1 \\ 1 & 1\end{array}\right]$.

$$
R=Q^{T} A=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 3 \\
1 & 5
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
2 & 2 \\
0 & 8
\end{array}\right]=\sqrt{2}\left[\begin{array}{ll}
1 & 1 \\
0 & 4
\end{array}\right] .
$$

Finally, let us make sure the two methods agree. We have:

$$
\left\langle u_{k}, a_{k}\right\rangle=\left\langle\frac{v_{k}}{\left\|v_{k}\right\|}, a_{k}\right\rangle=\frac{1}{\left\|v_{k}\right\|}\left\langle v_{k}, a_{k}\right\rangle=\frac{1}{\left\|v_{k}\right\|}\left\langle v_{k}, v_{k}\right\rangle=\left\|v_{k}\right\|
$$

and hence formula (3) can be rewritten as

$$
R=\left[\begin{array}{ccc}
\left\|v_{1}\right\| & \left\langle u_{1}, a_{2}\right\rangle & \left\langle u_{1}, a_{3}\right\rangle \\
0 & \left\|v_{2}\right\| & \left\langle u_{2}, a_{3}\right\rangle \\
0 & 0 & \left\|v_{3}\right\|
\end{array}\right]=\left[\begin{array}{ccc}
\left\langle u_{1}, a_{1}\right\rangle & \left\langle u_{1}, a_{2}\right\rangle & \left\langle u_{1}, a_{3}\right\rangle \\
0 & \left\langle u_{2}, a_{2}\right\rangle & \left\langle u_{2}, a_{3}\right\rangle \\
0 & 0 & \left\langle u_{3}, a_{3}\right\rangle
\end{array}\right]=Q^{T} A .
$$

