
Math 415 - Applied Linear Algebra

Computing the QR factorization

Let A be an m × n matrix with linearly independent columns. Applying the Gram-Schmidt
orthogonalization process to the columns of A produces an m × n matrix Q whose columns
are orthonormal. In fact, keeping track of all column operations on A yields a factorization
A = QR, where R is an n× n upper triangular matrix with positive entries on the diagonal.

Example 1a: A =

[
−1 3
1 5

]
. Let us carry out the Gram-Schmidt process with the columns

a1, a2.

v1 = a1 =

[
−1
1

]
u1 =

v1

‖v1‖
=

1√
2

[
−1
1

]
v2 = a2 − proju1

a2 = a2 − 〈u1, a2〉u1

=

[
3
5

]
−
(

1√
2

(−3 + 5)

)
1√
2

[
−1
1

]
=

[
3
5

]
−
[
−1
1

]
=

[
4
4

]
u2 =

v2

‖v2‖
=

1

4
√

2

[
4
4

]
=

1√
2

[
1
1

]
Therefore the matrix Q is

Q =
[
u1 u2

]
=

[
− 1√

2
1√
2

1√
2

1√
2

]
=

1√
2

[
−1 1
1 1

]
.

That is how the Gram-Schmidt process produces the matrix Q. Here are two methods for
finding R.

Method 1. Keeping track of column operations

At each step of Gram-Schmidt, the operations on the vectors correspond to column operations
on A, which correspond to multiplying by elementary matrices on the right. Let us write all
those matrices.

A =

[
−1 3
1 5

]
A

[ 1√
2

0

0 1

]
=

[
− 1√

2
3

1√
2

5

]

A

[ 1√
2

0

0 1

] [
1 −

√
2

0 1

]
=

[
− 1√

2
4

1√
2

4

]

A

[ 1√
2

0

0 1

] [
1 −

√
2

0 1

] [
1 0
0 1

4
√

2

]
=

[
− 1√

2
1√
2

1√
2

1√
2

]
= Q.
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From this we obtain

A = Q

[
1 0
0 1

4
√

2

]−1 [
1 −

√
2

0 1

]−1 [ 1√
2

0

0 1

]−1

= Q

[
1 0

0 4
√

2

] [
1
√

2
0 1

] [√
2 0

0 1

]
(1)

= Q

[√
2
√

2

0 4
√

2

]
= QR.

We have found

R =

[√
2
√

2

0 4
√

2

]
=
√

2

[
1 1
0 4

]
.

Let us check the factorization:

QR =
1√
2

[
−1 1
1 1

]√
2

[
1 1
0 4

]
=

[
−1 3
1 5

]
= A.

Note: The numbers in the product of elementary matrices in (1) “pile up” nicely in the matrix
R specifically because of the order in which the column operations are performed. Those
elementary matrices do not commute at all, so order is important.

Think of the matrix R as undoing all the operations in the Gram-Schmidt algorithm.

• The (1,1) entry
√

2 is undoing u1 = 1√
2
a1.

• The (1,2) entry
√

2 is undoing v2 = a2 −
√

2u1.

• The (2,2) entry 4
√

2 is undoing u2 = 1
4
√

2
v2.

Again, order of operations is very important!

Let us rewrite the equalities using symbols, in order to obtain the general formula.

A =
[
a1 a2

]
=
[
v1 a2

]
(2)

A

[ 1
‖v1‖ 0

0 1

]
=
[

v1

‖v1‖ a2

]
=
[
u1 a2

]
A

[ 1
‖v1‖ 0

0 1

] [
1 −〈u1, a2〉
0 1

]
=
[
u1 a2 − 〈u1, a2〉u1

]
=
[
u1 v2

]
A

[ 1
‖v1‖ 0

0 1

] [
1 −〈u1, a2〉
0 1

] [
1 0
0 1

‖v2‖

]
=
[
u1

v2

‖v2‖

]
=
[
u1 u2

]
= Q.

From this we obtain

A = Q

[
1 0
0 1

‖v2‖

]−1 [
1 −〈u1, a2〉
0 1

]−1 [ 1
‖v1‖ 0

0 1

]−1

= Q

[
1 0
0 ‖v2‖

] [
1 〈u1, a2〉
0 1

] [
‖v1‖ 0

0 1

]
= Q

[
‖v1‖ 〈u1, a2〉

0 ‖v2‖

]
= QR.
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This formula for R generalizes to any value of n. For example, if n were 3, R would be given
by

R =

‖v1‖ 〈u1, a2〉 〈u1, a3〉
0 ‖v2‖ 〈u2, a3〉
0 0 ‖v3‖

 . (3)

Knowing this, there is no need to rewrite the whole computation (2) every time. We can just
build the matrix R as we go along the Gram-Schmidt process, using (3).

Method 2. R = QT A

The fact that Q has orthonormal columns can be restated as QT Q = I. In particular, Q has a
left inverse, namely QT . From this we can find R:

A = QR⇒ QT A = QT QR = R.

In other words, the formula R = QT A holds, no matter what m and n are. It doesn’t matter
if the matrix is square or not.

Example: In example 1a, we had A =

[
−1 3
1 5

]
and Q = 1√

2

[
−1 1
1 1

]
.

R = QT A =
1√
2

[
−1 1
1 1

] [
−1 3
1 5

]
=

1√
2

[
2 2
0 8

]
=
√

2

[
1 1
0 4

]
.

Finally, let us make sure the two methods agree. We have:

〈uk, ak〉 = 〈 vk

‖vk‖
, ak〉 =

1

‖vk‖
〈vk, ak〉 =

1

‖vk‖
〈vk, vk〉 = ‖vk‖

and hence formula (3) can be rewritten as

R =

‖v1‖ 〈u1, a2〉 〈u1, a3〉
0 ‖v2‖ 〈u2, a3〉
0 0 ‖v3‖

 =

〈u1, a1〉 〈u1, a2〉 〈u1, a3〉
0 〈u2, a2〉 〈u2, a3〉
0 0 〈u3, a3〉

 = QT A.
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