Math 415 - Applied Linear Algebra
 Fall 2010, section D1
 Practice Final, Monday December 6

Name:

This is a practice exam to prepare for the final. It is longer and more difficult than the actual exam.

Problem 1a. Find all solutions (if any) of the system:

$$
\begin{array}{r}
3 x_{1}-x_{2}+5 x_{3}=0 \\
5 x_{1}+x_{2}+9 x_{3}=2 \\
-x_{1}+11 x_{2}+x_{3}=8 \\
x_{1}+x_{2}+2 x_{3}=1 .
\end{array}
$$

b. Is the vector $b=\left[\begin{array}{l}0 \\ 2 \\ 8 \\ 1\end{array}\right]$ in $\operatorname{Span}\left\{\left[\begin{array}{c}3 \\ 5 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 11 \\ 1\end{array}\right],\left[\begin{array}{l}5 \\ 9 \\ 1 \\ 2\end{array}\right]\right\}$? If not, explain; if so, write b explicitly as a linear combination of the given vectors.
c. What is the dimension of $\operatorname{Span}\left\{\left[\begin{array}{c}3 \\ 5 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 11 \\ 1\end{array}\right],\left[\begin{array}{l}5 \\ 9 \\ 1 \\ 2\end{array}\right]\right\}$? Explain.

Problem 2a. Find all values of α such that the matrix $A=\left[\begin{array}{lll}0 & 1 & \alpha \\ 1 & 0 & 1 \\ 1 & \alpha & 5\end{array}\right]$ fails to be invertible.
b. For $\alpha=0$, find the inverse of A.
c. Again for $\alpha=0$, find all solutions (if any) of the equation $A x=\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]$.

Problem 3. Let A be an $m \times n$ matrix of rank r. In each case below, answer the following.
(i) Give some example of what A could be.
(ii) Is the system $A x=b$ consistent for every $b \in \mathbb{R}^{m}$? Explain.
(iii) When the system $A x=b$ has a solution, is the solution unique? Explain.
a. $\quad m=3, n=2, r=2$
(i)
(ii)
(iii)
b. $\quad m=2, n=3, r=2$
(i)
(ii)
(iii)
c. $m=3, n=3, r=2$
(i)
(ii)
(iii)
d. $m=3, n=3, r=3$
(i)
(ii)
(iii)

Problem 4. Let $f_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], f_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $g_{1}=\left[\begin{array}{c}3 \\ -1\end{array}\right], g_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
a. Find the transition matrix from the basis $\left\{f_{1}, f_{2}\right\}$ to the basis $\left\{g_{1}, g_{2}\right\}$.
b. Find the coordinates of the vector $v=-f_{1}+3 f_{2}$ with respect to the basis $\left\{g_{1}, g_{2}\right\}$.

Problem 5. Let $P_{3}=\left\{p(x)=c_{0}+c_{1} x+c_{2} x^{2} \mid c_{0}, c_{1}, c_{2} \in \mathbb{R}\right\}$ be the vector space of polynomials of degree less than 3. Consider the map $L: P_{3} \rightarrow \mathbb{R}^{3}$ which evaluates polynomials at three distinct points a, b, c in \mathbb{R} :

$$
L(p)=\left[\begin{array}{l}
p(a) \\
p(b) \\
p(c)
\end{array}\right]
$$

For example, the polynomial $x^{2}+3 x-2$ is sent to the vector $\left[\begin{array}{l}a^{2}+3 a-2 \\ b^{2}+3 b-2 \\ c^{2}+3 c-2\end{array}\right]$.
a. Is L a linear transformation? Prove your answer.
b. Find the matrix representation of L with respect to the monomial basis $\left\{1, x, x^{2}\right\}$ of P_{3} and the standard basis of \mathbb{R}^{3}.
c. Find the rank of L, i.e. the dimension of $\operatorname{im}(L)$, and the nullity of L, i.e. the dimension of $\operatorname{ker}(L)$. [Hint: You can work in coordinates. The rank and nullity can be computed using any matrix representation.]
d. Using part (c), find $\operatorname{im}(L)$ and $\operatorname{ker}(L)$.
e. Part (d) says something about prescribing values for polynomials. Say we're looking for a polynomial p of degree less than 3 with prescribed values $p(a)=y_{1}, p(b)=y_{2}, p(c)=y_{3}$. Can we always find one? When we can, how many are there?

Problem 6. Let A be a 4×3 matrix of rank 2 such that the third column a_{3} is equal to $5 a_{1}-a_{2}$. Find a basis of the row space of A.

Problem 7. You own shares in a startup company and are trying to determine how their value $f(t)$ changes over time. There seems to be a long term trend going up at a constant rate c, and temporary fluctuations that oscillate with amplitude d. The value could be a function of the form $f(t)=c t+d \sin \left(\frac{\pi}{2} t\right)$ for some coefficients c, d.
Find the least squares fit of that form through data points $(1,2),(2,4),(3,5)$, where the first coordinate is the time t and the second coordinate is the observed value.

Problem 8. Consider the space $C[0,1]$ with inner product $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) \mathrm{dx}$. We want to approximate the function x^{2} by a polynomial of degree at most one. Find the function $c_{0}+c_{1} x$ which is closest to x^{2} in $C[0,1]$.

Problem 9. Let A be a 4×4 matrix such that the fourth column is the sum of the first three columns. Find an eigenvalue of A and corresponding eigenvector. Explain.

Problem 10. Let A be a 4×4 diagonalizable matrix with a single eigenvalue λ. Find A.

Problem 11. Solve the initial value problem:

$$
\begin{aligned}
& x_{1}^{\prime}=2 x_{1}-2 x_{2} \\
& x_{2}^{\prime}=2 x_{1}-3 x_{2} \\
& x_{1}(0)=2 \\
& x_{2}(0)=7 .
\end{aligned}
$$

Problem 12a. Find all values of α and β such that the matrix $A=\left[\begin{array}{ccc}5 & 2 & -1 \\ 2 & 2 & 2 \\ \alpha & \beta & 5\end{array}\right]$ can be diagonalized by an orthogonal matrix. Explain.
b. For some values of α and β found in (a), write a diagonalization of A by an orthogonal matrix U.

