Diagonalization of symmetric matrices

Theorem: A real matrix A is symmetric if and only if A can be diagonalized by an orthogonal matrix, i.e. $A=U D U^{-1}$ with U orthogonal and D diagonal.
To illustrate the theorem, let us diagonalize the following matrix by an orthogonal matrix:

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right]
$$

Here is a shortcut to find the eigenvalues. Note that rows 2 and 3 are multiples of row 1, which means A has nullity 2 , so that 0 is an eigenvalue with (algebraic) multiplicity at least 2 . Moreover the sum of the three eigenvalues is $\operatorname{tr}(A)=3$, so the third eigenvalue must be 3 .

Let us find the eigenvectors:

$$
\lambda_{1}=\lambda_{2}=0: A-0 I=\left[\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Take $v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$. They form a basis of the 0-eigenspace, albeit not an orthonormal basis. Let us apply Gram-Schmidt to obtain an orthonormal basis. (We call the intermediate orthogonal vectors w_{i}.)

$$
\begin{gathered}
w_{1}=v_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
u_{1}=\frac{w_{1}}{\left\|w_{1}\right\|}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
w_{2}=v_{2}-\operatorname{proj}_{u_{1}}\left(v_{2}\right)=v_{2}-\left\langle u_{1}, v_{2}\right\rangle u_{1}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]-\frac{1}{\sqrt{2}}(1) \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right] \\
u_{2}=\frac{w_{2}}{\left\|w_{2}\right\|}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right] . \\
\lambda_{3}=3: A-3 I=\left[\begin{array}{ccc}
-2 & -1 & 1 \\
-1 & -2 & -1 \\
1 & -1 & -2
\end{array}\right] \sim\left[\begin{array}{cc}
1 & -1 \\
-1 & -2 \\
-2 & -1 \\
-2 & -1
\end{array}\right] \sim\left[\begin{array}{lll}
1 & -1 & -2 \\
0 & -3 & -3 \\
0 & -3 & -3
\end{array}\right] \\
\sim\left[\begin{array}{ccc}
1 & -1 & -2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] .
\end{gathered}
$$

Take $v_{3}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ and normalize it:

$$
u_{3}=\frac{v_{3}}{\left\|v_{3}\right\|}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] .
$$

We conclude $A=U D U^{-1}$, where $U=\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}}\end{array}\right]$ is orthogonal and $D=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3\end{array}\right]$ is diagonal.

Trace of a matrix

Definition: The trace of an $n \times n$ matrix A is the sum of its diagonal entries:

$$
\operatorname{tr}(A)=a_{1,1}+a_{2,2}+\ldots+a_{n, n}
$$

Examples: $\operatorname{tr}\left(\left[\begin{array}{cc}4 & 5 \\ -1 & 2\end{array}\right]\right)=6, \quad \operatorname{tr}\left(\left[\begin{array}{cc}10 & 2 \\ 3 & -1\end{array}\right]\right)=9, \quad \operatorname{tr}\left(\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]\right)=15$,

$$
\operatorname{tr}\left(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=3, \quad \operatorname{tr}\left(\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=4
$$

Theorem: For any two $n \times n$ matrices A and B, we have $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.

Proof:

$$
\begin{aligned}
\operatorname{tr}(A B) & =\sum_{i=1}^{n}(A B)_{i i} \\
& =\sum_{i=1}^{n} \sum_{k=1}^{n} a_{i k} b_{k i} \\
& =\sum_{k=1}^{n} \sum_{i=1}^{n} b_{k i} a_{i k} \\
& =\sum_{k=1}^{n}(B A)_{k k} \\
& =\operatorname{tr}(B A) .
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \operatorname{tr}\left(\left[\begin{array}{cc}
4 & 5 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
10 & 2 \\
3 & -1
\end{array}\right]\right)=\operatorname{tr}\left(\left[\begin{array}{cc}
55 & 3 \\
-4 & -4
\end{array}\right]\right)=51 \\
& \operatorname{tr}\left(\left[\begin{array}{cc}
10 & 2 \\
3 & -1
\end{array}\right]\left[\begin{array}{cc}
4 & 5 \\
-1 & 2
\end{array}\right]\right)=\operatorname{tr}\left(\left[\begin{array}{cc}
38 & 54 \\
13 & 13
\end{array}\right]\right)=51
\end{aligned}
$$

Corollary: Similar matrices have the same trace.

Proof: Given $B=S A S^{-1}$, we have $\operatorname{tr}(B)=\operatorname{tr}\left(S A S^{-1}\right)=\operatorname{tr}\left(S^{-1} S A\right)=\operatorname{tr}(A)$.

Theorem: Let A be an $n \times n$ matrix. Then the sum of the eigenvalues of A (counted with multiplicity) is $\operatorname{tr}(A)$.

Proof: By Schur's theorem (6.4.3), A is similar to an upper triangular matrix, i.e. we have $A=S T S^{-1}$ for some nonsingular matrix S and upper triangular matrix T (both of which might have complex entries). Recalling that similar matrices have the same eigenvalues - indeed, the same characteristic polynomial - we obtain:

$$
\begin{aligned}
\operatorname{tr}(A) & =\operatorname{tr}(T), \text { since } T \text { is similar to } A \\
& =\text { sum of eigenvalues of } T, \text { since } T \text { is upper triangular } \\
& =\text { sum of eigenvalues of } A, \text { since } A \text { is similar to } T .
\end{aligned}
$$

Example: Let us find the eigenvalues of $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right| \\
& =(2-\lambda)^{2}-1 \\
& =\lambda^{2}-4 \lambda+3 \\
& =(\lambda-1)(\lambda-3) .
\end{aligned}
$$

The eigenvalues are 1 and 3 . Their sum is 4 , which is indeed $\operatorname{tr}(A)=2+2$.

