
Math 415 - Applied Linear Algebra

Diagonalization of symmetric matrices

Theorem: A real matrix A is symmetric if and only if A can be diagonalized by an orthogonal
matrix, i.e. A = UDU−1 with U orthogonal and D diagonal.

To illustrate the theorem, let us diagonalize the following matrix by an orthogonal matrix:

A =

 1 −1 1
−1 1 −1
1 −1 1

 .
Here is a shortcut to find the eigenvalues. Note that rows 2 and 3 are multiples of row 1,
which means A has nullity 2, so that 0 is an eigenvalue with (algebraic) multiplicity at least 2.
Moreover the sum of the three eigenvalues is tr(A) = 3, so the third eigenvalue must be 3.

Let us find the eigenvectors:

λ1 = λ2 = 0 : A− 0I =

 1 −1 1
−1 1 −1
1 −1 1

 ∼
1 −1 1

0 0 0
0 0 0

 .

Take v1 =

1
1
0

 and v2 =

0
1
1

. They form a basis of the 0-eigenspace, albeit not an orthonormal

basis. Let us apply Gram-Schmidt to obtain an orthonormal basis. (We call the intermediate
orthogonal vectors wi.)

w1 = v1 =

1
1
0


u1 =

w1

‖w1‖
=

1√
2

1
1
0


w2 = v2 − proju1

(v2) = v2 − 〈u1, v2〉u1 =

0
1
1

− 1√
2

(1)
1√
2

1
1
0

 =

−1
2

1
2

1


u2 =

w2

‖w2‖
=

1√
6

−1
1
2

 .
λ3 = 3 : A− 3I =

−2 −1 1
−1 −2 −1
1 −1 −2

 ∼
 1 −1 −2
−1 −2 −1
−2 −1 1

 ∼
1 −1 −2

0 −3 −3
0 −3 −3


∼

1 −1 −2
0 1 1
0 0 0

 ∼
1 0 −1

0 1 1
0 0 0

 .
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Take v3 =

 1
−1
1

 and normalize it:

u3 =
v3

‖v3‖
=

1√
3

 1
−1
1

 .

We conclude A = UDU−1, where U =
[
u1 u2 u3

]
=


1√
2
− 1√

6
1√
3

1√
2

1√
6
− 1√

3

0 2√
6

1√
3

 is orthogonal and

D =

0 0 0
0 0 0
0 0 3

 is diagonal.

Trace of a matrix

Definition: The trace of an n× n matrix A is the sum of its diagonal entries:

tr(A) = a1,1 + a2,2 + . . .+ an,n.

Examples: tr

([
4 5
−1 2

])
= 6, tr

([
10 2
3 −1

])
= 9, tr

1 2 3
4 5 6
7 8 9

 = 15,

tr

1 0 0
0 1 0
0 0 1

 = 3, tr




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 = 4.

Theorem: For any two n× n matrices A and B, we have tr(AB) = tr(BA).

Proof:

tr(AB) =
n∑

i=1

(AB)ii

=
n∑

i=1

n∑
k=1

aikbki

=
n∑

k=1

n∑
i=1

bkiaik

=
n∑

k=1

(BA)kk

= tr(BA).
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Example:

tr

([
4 5
−1 2

] [
10 2
3 −1

])
= tr

([
55 3
−4 −4

])
= 51

tr

([
10 2
3 −1

] [
4 5
−1 2

])
= tr

([
38 54
13 13

])
= 51.

Corollary: Similar matrices have the same trace.

Proof: Given B = SAS−1, we have tr(B) = tr(SAS−1) = tr(S−1SA) = tr(A).

Theorem: Let A be an n × n matrix. Then the sum of the eigenvalues of A (counted with
multiplicity) is tr(A).

Proof: By Schur’s theorem (6.4.3), A is similar to an upper triangular matrix, i.e. we have
A = STS−1 for some nonsingular matrix S and upper triangular matrix T (both of which might
have complex entries). Recalling that similar matrices have the same eigenvalues – indeed, the
same characteristic polynomial – we obtain:

tr(A) = tr(T ) , since T is similar to A

= sum of eigenvalues of T , since T is upper triangular

= sum of eigenvalues of A , since A is similar to T.

Example: Let us find the eigenvalues of A =

[
2 1
1 2

]

det(A− λI) =

∣∣∣∣2− λ 1
1 2− λ

∣∣∣∣
= (2− λ)2 − 1

= λ2 − 4λ+ 3

= (λ− 1)(λ− 3).

The eigenvalues are 1 and 3. Their sum is 4, which is indeed tr(A) = 2 + 2.
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