Math 285 - Intro Differential Equations Spring 2011, sections G1 and X1 Fourier series solutions

Section 9.4

14. The equation is $2x'' + 0.1x' + 18x = F(t) = 4 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin nt$. Let us find the steady 2π -periodic solution:

$$x_{sp}(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nt + b_n \sin nt$$
$$x'_{sp}(t) = + \sum_{n=1}^{\infty} -na_n \sin nt + nb_n \cos nt$$
$$x''_{sp}(t) = + \sum_{n=1}^{\infty} -n^2 a_n \cos nt - n^2 b_n \sin nt$$
$$2x''_{sp} + 0.1x'_{sp} + 18x_{sp} = 9a_0 + \sum_{n=1}^{\infty} [(-2n^2a_n + 0.1nb_n + 18a_n) \cos nt + (-2n^2b_n - 0.1na_n + 18b_n) \sin nt]$$
$$= 4\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin nt.$$

Equating the coefficients of corresponding terms, we obtain the equations:

$$9a_0 = 0$$

(18 - 2n²)a_n + 0.1n b_n = 0
-0.1n a_n + (18 - 2n²)b_n = $\frac{4(-1)^{n+1}}{n}$

which can be written in matrix form:

$$\begin{bmatrix} 18 - 2n^2 & 0.1n \\ -0.1n & 18 - 2n^2 \end{bmatrix} \begin{bmatrix} a_n \\ b_n \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{4(-1)^{n+1}}{n} \end{bmatrix}$$
$$\begin{bmatrix} a_n \\ b_n \end{bmatrix} = \begin{bmatrix} 18 - 2n^2 & 0.1n \\ -0.1n & 18 - 2n^2 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ \frac{4(-1)^{n+1}}{n} \end{bmatrix}$$
$$= \frac{1}{(18 - 2n^2)^2 + 0.01n^2} \begin{bmatrix} 18 - 2n^2 & -0.1n \\ 0.1n & 18 - 2n^2 \end{bmatrix} \begin{bmatrix} 0 \\ \frac{4(-1)^{n+1}}{n} \end{bmatrix}$$
$$= \frac{1}{(18 - 2n^2)^2 + 0.01n^2} \frac{4(-1)^{n+1}}{n} \begin{bmatrix} -0.1n \\ 18 - 2n^2 \end{bmatrix}.$$

The amplitude associated to the frequency $\omega_n = n$ is:

$$C_n = \sqrt{a_n^2 + b_n^2}$$

= $\left|\frac{1}{(18 - 2n^2)^2 + 0.01n^2} \frac{4(-1)^{n+1}}{n}\right| \sqrt{(18 - 2n^2)^2 + 0.01n^2}$
= $\frac{4}{n} \frac{1}{\sqrt{(18 - 2n^2)^2 + 0.01n^2}}.$

Here are the first few values:

$$C_1 = 0.2500$$

 $C_2 = 0.2000$
 $C_3 = 4.4444$
 $C_4 = 0.0714$
 $C_5 = 0.0250.$

The dominant frequency is $\omega_3 = 3$.