Math 285 - Intro Differential Equations
Spring 2011, sections G1 and X1
Deflection of a beam

Section 3.8

16a. The shape of the beam is given by:

y(x) z* + Ax® + B2 + Cx + D
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where A, B, C, D are coefficients to be determined from the endpoint conditions. Since the
beam is fixed at its ends = 0 and = L, the endpoint conditions are:

y(0) =4 (0)=0

y(L) =y (L) =0.
The conditions at x = 0 yield:

y(0)=D=0

y'(0)=C=0

The conditions at x = L then yield:
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L3+ 3AL*+2BL =0

Subtracting respectively 2 or 3 times equation (1) from equation (2) yields:
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so that the shape of the beam is given by:
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b. The roots of y'(x) = 0 are (ignoring the constant factor) the roots of:

42° — 6La* +2L%r =0
r(20* —3Lx + L*) =0
(2 —L)(x—L)=0

that is = = 0, %, L. Since the highest-degree term of y(z) is 557", the three critical points of

y are respectively a local minimum, a local maximum, and a local minimum. The maximum of

y on the interval [0, L] is therefore attained either at = £ or at the endpoints, which is not

2
the case. So the maximum is:

Ymax = y(
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