Math 285 - Intro Differential Equations
 Spring 2011, sections G1 and X1

 Deflection of a beam

 Deflection of a beam}

Section 3.8

16a. The shape of the beam is given by:

$$
y(x)=\frac{w}{24 E I} x^{4}+A x^{3}+B x^{2}+C x+D
$$

where A, B, C, D are coefficients to be determined from the endpoint conditions. Since the beam is fixed at its ends $x=0$ and $x=L$, the endpoint conditions are:

$$
\begin{gathered}
y(0)=y^{\prime}(0)=0 \\
y(L)=y^{\prime}(L)=0
\end{gathered}
$$

The conditions at $x=0$ yield:

$$
\begin{aligned}
y(0) & =D=0 \\
y^{\prime}(0) & =C=0
\end{aligned}
$$

The conditions at $x=L$ then yield:

$$
\begin{align*}
y(L) & =\frac{w}{24 E I} L^{4}+A L^{3}+B L^{2}=0 \\
& \Rightarrow \frac{w}{24 E I} L^{2}+A L+B=0 \tag{1}\\
y^{\prime}(L) & =\frac{w}{6 E I} L^{3}+3 A L^{2}+2 B L=0 \\
& \Rightarrow \frac{w}{6 E I} L^{2}+3 A L+2 B=0 \tag{2}
\end{align*}
$$

Subtracting respectively 2 or 3 times equation (1) from equation (2) yields:

$$
\begin{aligned}
\frac{w}{12 E I} L^{2}+A L & =0 \\
& \Rightarrow A=-\frac{w}{12 E I} L \\
\frac{w}{24 E I} L^{2}-B & =0 \\
& \Rightarrow B=\frac{w}{24 E I} L^{2}
\end{aligned}
$$

so that the shape of the beam is given by:

$$
\begin{aligned}
y(x) & =\frac{w}{24 E I} x^{4}-\frac{w}{12 E I} L x^{3}+\frac{w}{24 E I} L^{2} x^{2} \\
& =\frac{w}{24 E I}\left(x^{4}-2 L x^{3}+L^{2} x^{2}\right) .
\end{aligned}
$$

b. The roots of $y^{\prime}(x)=0$ are (ignoring the constant factor) the roots of:

$$
\begin{aligned}
4 x^{3}-6 L x^{2}+2 L^{2} x & =0 \\
x\left(2 x^{2}-3 L x+L^{2}\right) & =0 \\
x(2 x-L)(x-L) & =0
\end{aligned}
$$

that is $x=0, \frac{L}{2}, L$. Since the highest-degree term of $y(x)$ is $\frac{w}{24 E I} x^{4}$, the three critical points of y are respectively a local minimum, a local maximum, and a local minimum. The maximum of y on the interval $[0, L]$ is therefore attained either at $x=\frac{L}{2}$ or at the endpoints, which is not the case. So the maximum is:

$$
\begin{aligned}
y_{\max } & =y\left(\frac{L}{2}\right) \\
& =\frac{w}{24 E I}\left(\frac{L}{2}\right)^{2}\left(\left(\frac{L}{2}\right)^{2}-2 L\left(\frac{L}{2}\right)+L^{2}\right) \\
& =\frac{w}{24 E I} \frac{L^{2}}{4}\left(\frac{L^{2}}{4}-L^{2}+L^{2}\right) \\
& =\frac{w}{24 E I} \frac{L^{4}}{16} \\
& =\frac{w L^{4}}{384 E I} .
\end{aligned}
$$

