1 Substitute Lecture on March 18, 2011

1.1 Review of Fourier series of functions with period $p=2 \pi$

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a periodic function with period $p=2 \pi$. Then we assign to f its Fourier series

$$
f(t) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)
$$

where the review of formulae for the coefficients a_{n} and b_{n} is given below:

Formulae for Fourier coefficients

$$
\text { General case: } \begin{gathered}
a_{m}=\frac{1}{\pi} \int_{-\frac{\pi}{\pi}}^{\pi} f(t) \cos m t d t, m=0,1,2, \ldots, \\
b_{m}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin m t d t, m=1,2, \ldots
\end{gathered}
$$

Change of interval of integration: $\begin{gathered}a_{m}=\frac{1}{\pi} \int_{-\pi+\alpha}^{\pi+\alpha} f(t) \cos m t d t, m=0,1,2, \ldots, \\ b_{m}=\frac{1}{\pi} \int_{-\pi+\alpha}^{\pi+\alpha} f(t) \sin m t d t, m=1,2, \ldots .\end{gathered}$
In particular, $\begin{gathered}a_{m}=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) \cos m t d t, m=0,1,2, \ldots, \\ b_{m}=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) \sin m t d t, m=1,2, \ldots .\end{gathered}$
If the function is even: $a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos n t d t, n=0,1,2, \ldots$ and

$$
b_{n}=0, n=1,2, \ldots
$$

If the function is odd: $\begin{gathered}a_{n}=0, n=0,1,2, \ldots \text { and } \\ b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin n t d t, n=1,2, \ldots .\end{gathered}$

It is important to remember that $f(t)$ need not be equal to its Fourier series even when f is a continuous periodic (with period $p=2 \pi$) function.

1.2 General Fourier series

Let $y=f(t)$, be a periodic function with a period $p=2 L$. To obtain Fourier series in this general case consider change of variable:

$$
u=\frac{\pi t}{L}
$$

Then if $-L<t<L$, then $-\pi<u<\pi$. We have

$$
t=\frac{u L}{\pi} .
$$

Set,

$$
g(u)=f\left(\frac{u L}{\pi}\right), \text { where } g \text { is periodic with } p=2 \pi
$$

We know how to write Fourier series for $g(u)$:

$$
g(u) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n u+b_{n} \sin n u\right)
$$

where

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} g(u) \cos n u d u, n=0,1,2, \ldots \text { and } \\
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} g(u) \sin n u d u, n=1,2, \ldots
\end{aligned}
$$

In the integral

$$
\frac{1}{\pi} \int_{-\pi}^{\pi} g(u) \cos n u d u
$$

make change of variable:

$$
\begin{gathered}
u=\frac{\pi t}{L} \Rightarrow d u=\frac{\pi}{L} d t a n d-L \leq t \leq L . \\
\text { Also recall that } g\left(\frac{\pi t}{L}\right)=f(t) . \\
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} g(u) \cos n u d u=\frac{\pi}{L} \frac{1}{\pi} \int_{-L}^{L} g\left(\frac{\pi t}{L}\right) \cos \frac{\pi n t}{L} \frac{\pi}{L} d t \\
=\frac{1}{L} \int_{-L}^{L} f(t) \cos \frac{\pi n t}{L} d t, n=0,1,2, \ldots
\end{gathered}
$$

Likewise,

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(t) \sin \frac{\pi n t}{L} d t, n=1,2, \ldots
$$

So, we get

$$
f(t)=g\left(\frac{\pi t}{L}\right) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{\pi n t}{L}+b_{n} \sin \frac{\pi n t}{L}\right)
$$

where

$$
\begin{aligned}
& a_{0}=\frac{1}{L} \int_{-L}^{L} f(t) d t, a_{n}=\frac{1}{L} \int_{-L}^{L} f(t) \cos \frac{\pi n t}{L} d t \\
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(t) \sin \frac{\pi n t}{L} d t, n=1,2, \ldots
\end{aligned}
$$

Similar remarks as for $p=2 \pi$ are applicable here:

Formulas for Fourier coefficients

$$
\text { General case: } \begin{gathered}
a_{m}=\frac{1}{L} \int_{-L}^{L} f(t) \cos \frac{\pi m t}{L} d t, m=0,1,2, \ldots \\
b_{m}=\frac{1}{\pi} \int_{-L}^{L} f(t) \sin \frac{\pi m t}{L} d t, m=1,2, \ldots
\end{gathered}
$$

Change the interval of integration: $\begin{gathered}a_{m}=\frac{1}{L} \int_{-L+\alpha}^{L+\alpha} f(t) \cos \frac{\pi m t}{L} d t, m=0,1,2, \ldots, \\ b_{m}=\frac{1}{L} \int_{-L+\alpha}^{L+\alpha} f(t) \sin \frac{\pi m t}{L} d t, m=1,2, \ldots .\end{gathered}$
In particular, $\begin{gathered}a_{m}=\frac{1}{L} \int_{0}^{2 L} f(t) \cos \frac{\pi m t}{L} d t, m=0,1,2, \ldots, \\ b_{m}=\frac{1}{L} \int_{0}^{2 L} f(t) \sin \frac{\pi m t}{L} d t, m=1,2, \ldots .\end{gathered}$
If the function is even: $a_{n}=\frac{2}{L} \int_{0}^{L} f(t) \cos \frac{\pi n t}{L} d t, n=0,1,2, \ldots$ and

$$
b_{n}=0, n=1,2, \ldots
$$

If the function is odd: $\begin{gathered}a_{n}=0, n=0,1,2, \ldots \text { and } \\ b_{n}=\frac{2}{L} \int_{0}^{L} f(t) \sin \frac{\pi n t}{L} d t, n=1,2, \ldots .\end{gathered}$

1.3 Convergence of Fourier series

We begin with the following definition:
A function $y=f(t)$ is called piecewise continuous on the segment $[a, b]$ if there are

$$
a=t_{0}<t_{1}<t_{2}<\ldots<t_{n-1}<t_{n}=b
$$

such that

- $f(t)$ is continuous for $t_{j-1}<t<t_{j}$, where $j=1,2, \ldots, n$.
- The limits

$$
\begin{aligned}
\lim _{t \rightarrow t_{j}+} f(t), \lim _{t \rightarrow t_{j}-} f(t), j & =1,2, \ldots n-1, \\
& \lim _{t \rightarrow a+} f(t), \lim _{t \rightarrow b-} f(t)
\end{aligned}
$$

exist and are finite.
For example, the function

is piecewise continuous, whereas the function

is not. Of course, a continuos function is a special case of a piecewise continuous function. If $f(t)$ is defined for every t, then it is piecewise continuous if it is piecewise continuous on every closed segment $[a, b]$. Finally, a piecewise continuous function $f(t)$ is called piecewise smooth if its derivative is piecewise continuous.

We say that f is piecewise continuous on \mathbb{R} if f is piecewise continuous on every segment $[a, b]$; likewise, f is piecewise smooth on \mathbb{R} if f is piecewise smooth on every segment $[a, b]$.

I
It is important to remember that a continuous function may be different from its Fourier series.

We give without proof the following:

Theorem 1 (Convergence theorem) Suppose $f(t)$ is periodic with period $p=2 L$. Also, let $f(t)$ be piecewise smooth. Consider Fourier series of $f(t)$:

$$
f(t) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{\pi n t}{L}+b_{n} \sin \frac{\pi n t}{L}\right)
$$

where

$$
\begin{aligned}
& a_{0}=\frac{1}{L} \int_{-L}^{L} f(t) d t, a_{n}=\frac{1}{L} \int_{-L}^{L} f(t) \cos \frac{\pi n t}{L} d t \\
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(t) \sin \frac{\pi n t}{L} d t n=1,2, \ldots
\end{aligned}
$$

Then
(a)

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{\pi n t}{L}+b_{n} \sin \frac{\pi n t}{L}\right)
$$

if $f(t)$ is continuous at t;
(b)

$$
\frac{f(t+0)+f(t-0)}{2}=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{\pi n t}{L}+b_{n} \sin \frac{\pi n t}{L}\right)
$$

if t is a point of discontinuity of the function $f(t)$.
Recall that

$$
f(t+0)=\lim _{x \rightarrow t+0} f(x) \text { and } f(t-0)=\lim _{x \rightarrow t-0} f(x)
$$

Notice that, as $f(t)$ is piecewise continuous, the foregoing limits exist and are finite. So, for a piecewise smooth periodic function with $p=2 L$,

$$
\frac{f(t+0)+f(t-0)}{2}=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{\pi n t}{L}+b_{n} \sin \frac{\pi n t}{L}\right)
$$

because at the point of continuity

$$
\frac{f(t+0)+f(t-0)}{2}=f(t) .
$$

For a piecewise smooth periodic function $f(t)$ with $p=2 L$ it is customary to write

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{\pi n t}{L}+b_{n} \sin \frac{\pi n t}{L}\right)
$$

where it goes without saying that instead of values of $f(t)$, at the point of discontinuity, we take the new value:

$$
\frac{f(t+0)+f(t-0)}{2} .
$$

Example 2

$$
f(t)=\left\{\begin{array}{cc}
0 & \text { if }-5 \leq t \leq 0 \\
1 & \text { if } 0<t<5
\end{array} .\right.
$$

We have:

$$
\begin{gathered}
L=5, p=10 . \\
a_{0}=\frac{1}{5} \int_{-5}^{5} f(t) d t=\frac{1}{5} \int_{-5}^{0} 0 d t+\frac{1}{5} \int_{0}^{5} d t=1 . \\
a_{n}=\frac{1}{5} \int_{-5}^{5} f(t) \cos \frac{\pi n t}{5} d t=\frac{1}{5} \int_{0}^{5} \cos \frac{\pi n t}{5} d t=\frac{\sin \pi n}{\pi n}=0, n=1,2, \ldots .
\end{gathered}
$$

$$
\begin{aligned}
b_{n} & =\frac{1}{5} \int_{-5}^{5} f(t) \sin \frac{\pi n t}{5} d t=\frac{1}{5} \int_{0}^{5} \sin \frac{\pi n t}{5} d t=\frac{1}{5} 5 \frac{1-\cos \pi n}{\pi n} \\
& =\frac{1}{\pi n}\left[1-(-1)^{n}\right]=\left\{\begin{array}{l}
\frac{2}{\pi n} \text { if } n \text { is odd } \\
0 \text { if } n \text { is even }
\end{array}\right.
\end{aligned}
$$

So,

$$
f(t) \sim \frac{1}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin \frac{2 n-1}{5} \pi t}{2 n-1}
$$

By the convergence theorem,

$$
f(t)=\frac{1}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin \frac{2 n-1}{5} \pi t}{2 n-1}
$$

if $t \neq 5 k, k=0, \pm 1, \pm 2, \ldots$. If $t=5 k$, then

$$
\frac{f(5 k+0)+f(5 k-0)}{2}=\frac{1}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin \frac{2 n-1}{5} \pi(5 k)}{2 n-1}
$$

We can also see this directly:

$$
\begin{aligned}
\sin \frac{2 n-1}{5} \pi(5 k) & =\sin (2 n-1) k \pi=0 \Rightarrow \\
\frac{1}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin \frac{2 n-1}{5} \pi(5 k)}{2 n-1} & =\frac{1}{2} ; \\
\frac{f(5 k+0)+f(5 k-0)}{2} & =\frac{1+0}{2}=\frac{1}{2} .
\end{aligned}
$$

Example 3

$$
f(t)=\left\{\begin{array}{c}
0 \text { if }-1<t<0 \\
t \text { if } 0 \leq t<1
\end{array} .\right.
$$

We have $L=1$ and $p=2$.

$$
\begin{gathered}
a_{0}=\int_{-1}^{1} f(t) d t=\int_{0}^{1} t d t=\frac{1}{2} . \\
a_{n}=\int_{-1}^{1} f(t) \cos \pi n t d t=\int_{0}^{1} t \cos \pi n t d t \\
=\left.\frac{t \sin \pi n t}{\pi n}\right|_{0} ^{1}-\int_{0}^{1} \frac{\sin \pi n t}{\pi n} d t=\sin \pi n+\left.\frac{\cos \pi n t}{\pi^{2} n^{2}}\right|_{0} ^{1} \\
=-\frac{1-\cos \pi n}{\pi^{2} n^{2}}=-\frac{1-(-1)^{n}}{\pi^{2} n^{2}}=\left\{\begin{array}{c}
0 \text { if } n \text { is even } \\
-\frac{2}{\pi^{2} n^{2}} \text { if } n \text { is odd }
\end{array} .\right.
\end{gathered}
$$

$$
b_{n}=\int_{-1}^{1} f(t) \sin \pi n t d t=\int_{0}^{1} t \sin \pi n t d t
$$

$$
=-\left.t \frac{\cos \pi n t}{\pi n}\right|_{0} ^{1}+\int_{0}^{1} \frac{\cos \pi n t}{\pi n} d t=-\frac{\cos \pi n}{\pi n}+\frac{\sin \pi n}{\pi^{2} n^{2}}=\frac{(-1)^{n+1}}{\pi n}
$$

So,

$$
f(t) \sim \frac{1}{4}-\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\cos \pi(2 n-1) t}{(2 n-1)^{2}}+\frac{1}{\pi} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin \pi n t}{n}
$$

By the convergence theorem,

$$
\begin{aligned}
\frac{f(0+)+f(0-)}{2} & =\frac{0+0}{2}=0= \\
& =\frac{1}{4}-\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\cos \pi(2 n-1) 0}{(2 n-1)^{2}}+\frac{1}{\pi} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin \pi n 0}{n} \\
& =\frac{1}{4}-\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \Rightarrow \\
\frac{1}{4} & =\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}
\end{aligned}
$$

Hence,

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}
$$

This example shows that one can use Fourier series to find sums of infinite series with constant coefficients.

