
1 Substitute Lecture on March 18, 2011

1.1 Review of Fourier series of functions with period
p = 2�

Let f : R! R be a periodic function with period p = 2�. Then we assign
to f its Fourier series

f (t) ~
a0
2
+

1X
n=1

(an cosnt+ bn sinnt) ;

where the review of formulae for the coe¢ cients an and bn is given below:

Formulae for Fourier coe¢ cients

General case:
am =

1
�

R �
�� f (t) cosmtdt;m = 0; 1; 2; :::,

bm =
1
�

R �
�� f (t) sinmtdt;m = 1; 2; ::: .

Change of interval of integration:
am =

1
�

R �+�
��+� f (t) cosmtdt;m = 0; 1; 2; :::,

bm =
1
�

R �+�
��+� f (t) sinmtdt;m = 1; 2; ::: .

In particular,
am =

1
�

R 2�
0
f (t) cosmtdt;m = 0; 1; 2; :::,

bm =
1
�

R 2�
0
f (t) sinmtdt;m = 1; 2; ::: .

If the function is even:
an =

2
�

R �
0
f (t) cosntdt, n = 0; 1; 2; ::: and
bn = 0; n = 1; 2; ::: .

If the function is odd:
an = 0, n = 0; 1; 2; :::and

bn =
2
�

R �
0
f (t) sinntdt, n = 1; 2; ::: .

It is important to remember that f (t) need not be equal to its Fourier
series even when f is a continuous periodic (with period p = 2�) function.

1.2 General Fourier series

Let y = f (t) ; be a periodic function with a period p = 2L. To obtain Fourier
series in this general case consider change of variable:

u =
�t

L
:
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Then if �L < t < L, then �� < u < �. We have

t =
uL

�
:

Set,

g (u) = f

�
uL

�

�
; where g is periodic with p = 2�.

We know how to write Fourier series for g (u) :

g (u) � a0
2
+

1X
n=1

(an cosnu+ bn sinnu) ;

where

an =
1

�

Z �

��
g (u) cosnudu, n = 0; 1; 2; ::: and

bn =
1

�

Z �

��
g (u) sinnudu, n = 1; 2; ::: :

In the integral
1

�

Z �

��
g (u) cosnudu;

make change of variable:

u =
�t

L
) du =

�

L
dtand� L � t � L:

Also recall that g
�
�t

L

�
= f (t) :

an =
1

�

Z �

��
g (u) cosnudu =

�

L

1

�

Z L

�L
g

�
�t

L

�
cos

�nt

L

�

L
dt

=
1

L

Z L

�L
f (t) cos

�nt

L
dt; n = 0; 1; 2; :::.
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Likewise,

bn =
1

L

Z L

�L
f (t) sin

�nt

L
dt; n = 1; 2; ::: .

So, we get

f (t) = g

�
�t

L

�
� a0
2
+

1X
n=1

�
an cos

�nt

L
+ bn sin

�nt

L

�
;

where

a0 =
1

L

Z L

�L
f (t) dt; an =

1

L

Z L

�L
f (t) cos

�nt

L
dt;

bn =
1

L

Z L

�L
f (t) sin

�nt

L
dt; n = 1; 2; :::.

Similar remarks as for p = 2� are applicable here:

Formulas for Fourier coe¢ cients

General case:
am =

1
L

R L
�L f (t) cos

�mt
L
dt;m = 0; 1; 2; :::,

bm =
1
�

R L
�L f (t) sin

�mt
L
dt;m = 1; 2; ::: .

Change the interval of integration:
am =

1
L

R L+�
�L+� f (t) cos

�mt
L
dt;m = 0; 1; 2; :::,

bm =
1
L

R L+�
�L+� f (t) sin

�mt
L
dt;m = 1; 2; ::: .

In particular,
am =

1
L

R 2L
0
f (t) cos �mt

L
dt;m = 0; 1; 2; :::,

bm =
1
L

R 2L
0
f (t) sin �mt

L
dt;m = 1; 2; ::: .

If the function is even: an =
2
L

R L
0
f (t) cos �nt

L
dt, n = 0; 1; 2; ::: and

bn = 0; n = 1; 2; ::: .

If the function is odd:
an = 0, n = 0; 1; 2; :::and

bn =
2
L

R L
0
f (t) sin �nt

L
dt, n = 1; 2; ::: .

1.3 Convergence of Fourier series

We begin with the following de�nition:
A function y = f (t) is called piecewise continuous on the segment [a; b]

if there are
a = t0 < t1 < t2 < ::: < tn�1 < tn = b

such that
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� f (t) is continuous for tj�1 < t < tj, where j = 1; 2; :::; n:

� The limits

lim
t!tj+

f (t) ; lim
t!tj�

f (t) ; j = 1; 2; :::n� 1;

lim
t!a+

f (t) ; lim
t!b�

f (t)

exist and are �nite.

For example, the function

is piecewise continuous, whereas the function
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is not. Of course, a continuos function is a special case of a piecewise contin-
uous function. If f (t) is de�ned for every t, then it is piecewise continuous
if it is piecewise continuous on every closed segment [a; b]. Finally, a piece-
wise continuous function f (t) is called piecewise smooth if its derivative is
piecewise continuous.
We say that f is piecewise continuous on R if f is piecewise continuous

on every segment [a; b]; likewise, f is piecewise smooth on R if f is piecewise
smooth on every segment [a; b].

It is important to remember that a continuous function
may be di¤erent from its Fourier series.

We give without proof the following:
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Theorem 1 (Convergence theorem) Suppose f (t) is periodic with pe-
riod p = 2L. Also, let f (t) be piecewise smooth. Consider Fourier series
of f (t):

f (t) � a0
2
+

1X
n=1

�
an cos

�nt

L
+ bn sin

�nt

L

�
;

where

a0 =
1

L

Z L

�L
f (t) dt; an =

1

L

Z L

�L
f (t) cos

�nt

L
dt;

bn =
1

L

Z L

�L
f (t) sin

�nt

L
dtn = 1; 2; :::.

Then
(a)

f (t) =
a0
2
+

1X
n=1

�
an cos

�nt

L
+ bn sin

�nt

L

�
;

if f (t) is continuous at t;
(b)

f (t+ 0) + f (t� 0)
2

=
a0
2
+

1X
n=1

�
an cos

�nt

L
+ bn sin

�nt

L

�
;

if t is a point of discontinuity of the function f (t).
Recall that

f (t+ 0) = lim
x!t+0

f (x) and f (t� 0) = lim
x!t�0

f (x) :

Notice that, as f (t) is piecewise continuous, the foregoing limits exist and
are �nite. So, for a piecewise smooth periodic function with p = 2L;

f (t+ 0) + f (t� 0)
2

=
a0
2
+

1X
n=1

�
an cos

�nt

L
+ bn sin

�nt

L

�
;

because at the point of continuity

f (t+ 0) + f (t� 0)
2

= f (t) :
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For a piecewise smooth periodic function f (t) with p = 2L it is customary
to write

f (t) =
a0
2
+

1X
n=1

�
an cos

�nt

L
+ bn sin

�nt

L

�
;

where it goes without saying that instead of values of f (t), at the point of
discontinuity, we take the new value:

f (t+ 0) + f (t� 0)
2

:

Example 2

f (t) =

�
0 if � 5 � t � 0
1 if 0 < t < 5

:

We have:
L = 5; p = 10:

a0 =
1

5

Z 5

�5
f (t) dt =

1

5

Z 0

�5
0dt+

1

5

Z 5

0

dt = 1:

an =
1

5

Z 5

�5
f (t) cos

�nt

5
dt =

1

5

Z 5

0

cos
�nt

5
dt =

sin �n

�n
= 0; n = 1; 2; ::: .
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bn =
1

5

Z 5

�5
f (t) sin

�nt

5
dt =

1

5

Z 5

0

sin
�nt

5
dt =

1

5
5
1� cos �n

�n

=
1

�n
[1� (�1)n] =

�
2
�n
if n is odd

0 if n is even
:

So,

f (t) � 1

2
+
2

�

1X
n=1

sin 2n�1
5
�t

2n� 1 :

By the convergence theorem,

f (t) =
1

2
+
2

�

1X
n=1

sin 2n�1
5
�t

2n� 1 ;

if t 6= 5k; k = 0;�1;�2; ::: . If t = 5k, then

f (5k + 0) + f (5k � 0)
2

=
1

2
+
2

�

1X
n=1

sin 2n�1
5
� (5k)

2n� 1 :

We can also see this directly:

sin
2n� 1
5

� (5k) = sin (2n� 1) k� = 0)

1

2
+
2

�

1X
n=1

sin 2n�1
5
� (5k)

2n� 1 =
1

2
;

f (5k + 0) + f (5k � 0)
2

=
1 + 0

2
=
1

2
:

Example 3

f (t) =

�
0 if � 1 < t < 0
t if 0 � t < 1 :
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We have L = 1 and p = 2:

a0 =

Z 1

�1
f (t) dt =

Z 1

0

tdt =
1

2
:

an =

Z 1

�1
f (t) cos �ntdt =

Z 1

0

t cos �ntdt

=
t sin �nt

�n
j10 �

Z 1

0

sin �nt

�n
dt = sin�n+

cos �nt

�2n2
j10

= �1� cos �n
�2n2

= �1� (�1)
n

�2n2
=

�
0 if n is even

� 2
�2n2

if n is odd
:

bn =

Z 1

�1
f (t) sin�ntdt =

Z 1

0

t sin �ntdt

= �tcos �nt
�n

j10 +
Z 1

0

cos �nt

�n
dt = �cos �n

�n
+
sin �n

�2n2
=
(�1)n+1

�n
:

So,

f (t) � 1

4
� 2

�2

1X
n=1

cos � (2n� 1) t
(2n� 1)2

+
1

�

1X
n=1

(�1)n+1 sin �nt
n

:
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By the convergence theorem,

f (0+) + f (0�)
2

=
0 + 0

2
= 0 =

=
1

4
� 2

�2

1X
n=1

cos � (2n� 1) 0
(2n� 1)2

+
1

�

1X
n=1

(�1)n+1 sin �n0
n

=
1

4
� 2

�2

1X
n=1

1

(2n� 1)2
)

1

4
=
2

�2

1X
n=1

1

(2n� 1)2

Hence,
1X
n=1

1

(2n� 1)2
=
�2

8
:

This example shows that one can use Fourier series to �nd sums of in�nite
series with constant coe¢ cients.
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