

Figure 1: Whirling string.

Section 3.8 - Whirling strings

A string is made to whirl about the x-axis between endpoints $x=0$ and $x=L=2 \mathrm{~m}$ at a constant angular velocity ω. The tension in the string is 0.5 N and its density is $5 \mathrm{~g} / \mathrm{m}$. Assume the deflection of the string (relative to its equilibrium position on the x-axis) is very small.
a. As the string whirls fast, you notice that its shape goes through 4 half-periods (figure 1). Find the angular velocity of the string, i.e. how many times per second does it whirl about its rotation axis? (Recall: $1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$.)
b. The maximal deflection of the string is 1 mm ; that is the height of each "hump" in figure 1. Find the maximal rate of change of the deflection with respect to the position x. (For example, the rate of change of the deflection at the top of a "hump" is 0 , so that is certainly not where the maximal rate of change is attained.)

