1. Consider the region D in \mathbb{R}^{3} bounded by the $x y$-plane and the surface $x^{2}+y^{2}+z=1$.
(a) Make a sketch of D.
(b) The boundary of D, denoted ∂D, has two parts: the curved top S_{1} and the flat bottom S_{2}. Parameterize S_{1} and calculate the flux of $\mathbf{F}=(0,0, z)$ through S_{1} with respect to the upward pointing unit normal vector field. Check you answer with the instructor.
(c) Without doing the full calculation, determine the flux of \mathbf{F} through S_{2} with the downward pointing normals.
(d) Determine the flux of \mathbf{F} through ∂D with the outward pointing normals.
(e) Apply the Divergence Theorem and your answer in (d) to find the volume of D. Check your answer with the instructor.
2. Consider the vector field $\mathbf{F}=(-y, x, z)$.
(a) Compute curl F.
(b) For the surface S_{1} above, evaluate $\iint_{S_{1}}(\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} d A$.
(c) Check your answer in (b) using Stokes' Theorem.
3. If time remains:
(a) Check your answer in 1(e) by directly calculating the volume of D.
(b) Repeat 2 (b-c) for the surface S_{2} and also for the surface ∂D. What exactly does 2(c) mean for the surface ∂D ?
(c) For the vector field $\mathbf{F}=(-y, x, z)$ from the second problem, compute $\operatorname{div}(\operatorname{curl} \mathbf{F})$. Now suppose $\mathbf{F}=\left(F_{1}, F_{2}, F_{3}\right)$ is an arbitrary vector field. Can you say anything about the function $\operatorname{div}(\operatorname{curl} \mathbf{F})$?
