1. Let S be the portion of the plane $x+y+z=1$ which lies in the positive octant.
(a) Draw a picture of S.
(b) Find a parametrization $\mathbf{r}: D \rightarrow S$, being sure to clearly indicate the domain D. Check your answer with the instructor.
(c) Use your answer in (b) to compute the area of S via an integral over D.
(d) Check your answer in (c) using only things you learned in the first few weeks of this class.
2. Consider the surface S which is the part of $z+x^{2}+y^{2}=1$ where $z \geq 0$.
(a) Draw a picture of S.
(b) Find a parametrization $\mathrm{r}: D \rightarrow S$. Check your answer with the instructor.
3. Let S be the surface given by the following parametrization. Let $D=[-1,1] \times[0,2 \pi]$ and define

$$
\mathbf{r}(u, v)=(u \cos v, u \sin v, v)
$$

(a) Consider the vertical line segment $L=\{u=0\}$ in D. Describe geometrically the image of L under \mathbf{r}.
(b) Repeat for the vertical segments where $u=-1$ and $u=1$.
(c) Use your answers in (a) and (b) to make a sketch of S.
4. Consider the ellipsoid E given by $\frac{x^{2}}{9}+\frac{y^{2}}{4}+z^{2}=1$.
(a) Draw a picture of E.
(b) Find a parametrization of E. Hint: Find a transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ which takes the unit sphere S to E, and combine that with our existing parametrization of the plain sphere S.

